AD-A
Hllllﬂ!llllllllll!llMﬂlﬂlﬂllﬂll:ﬂlll CORL Sequence AOT-001F

25 July 1994

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLEO
SYSTEMS (STARS) PROGRAM

AF/STARS Demonstration Project Experience Report
Version 1.1

Contract No. F19628-93-C-0129
Task IVO1 — Megaprogramming Demonstration Projects

Prepared for:

Electronic Systems Center DT ! C
Air Force Materiel Command, USAF s ELE CT Ex

Hanscom AFB, MA 01731-2116 SEP 2 3 1994 r;,e 53

;;

Prepared Jointly by: -

- Loral Federal Systems
700 North Frederick Avenue
Gaithersburg, MD 20879

! Thue docunzar bas been approey 94-30
; for public 1slaces Pproved and
S i B ||||ll|l|"||||||lﬂllllllllﬂllllll"mlll! W

130 West Paine Steet
Peterson AFB, CO 80914-2320

P TRt et o T
‘:m\ ag o bk b [R S \.'D)]

CLEARED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED

Task/Subtask IV01.7
CDRL Sequence A011-001F
25 July 1994

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

AF/STARS Demonstration Project Experience Report
Version 1.1

Contract No. F19628-93-C-0129
Task IVO1 — Megaprogramming Demonstration Projects

Accesion For

NTIS CRA&I
DTIC TAR .
Unannacrced Electronic Systems Center

Justficaton | Air Force Materiel Command, USAF

- Hanscom AFB, MA 01731-2116
By f‘v /)7 e
Dist¥ibution]

Prepared for:

R R Y i

Availabtlity Cores Prepared Jointly by:

Avaii & 1ot
Dist Special Loral Federal Systems
} 700 North Frederick Avenue

A-1 Gaithersburg, MD 20879

and

SWSC/SMX
130 West Paine Steet
Peterson AFB, CO 80914-2320

REPORT DOCUMENTION PAGE Form Approved
OMB No. 0704-0188
PUOIC reporting DUFGen 10 e COICE0N Of INKNTALion B SSTAMAIEd 10 2velage | RoU DIF CHu0g 1he UMe (of tevasnng InSITUCOnS, o caia o and
mmw ded, and compieting and meolbclnnd s-nd PArding this i umymmummmumm
including sugge for reducing this burden 10 Services, Di 4 O and Reporis, 1215 Jetlerson Davie Highway, Sune 1204, Artngion,
VAMM&MO«&demBmPWMummmmw Washington, DC 20503.
1. AGENCY USE ONLY {Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 25, 1994 Final - Version 1.1
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Air Force/STARS Demonstration Project Experience Report F19628-93-C-0129

6. AUTHOR(S)

Lynn Underhill, Loral Federal Systems

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION
Loral Federal Systems SWSC/SMX REPORT NUMBER
700 N. Fredericl- Avenue 130 W. Paine Street
Gaithersburg, MD 20879 Peterson AFB, CO 80914-2320 » AQ11-001F

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Electronic Systems Center/ENS AGENCY REPORT NUMBER

Air Force Materiel Command, USAF
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

11. SUPPLEMENTARY NOTES

N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Statement A - Approved for Public Release,
Distribution is Unlimited

13. ABSTRACT (Maximum 200 words)

This Experience Report is a product of the Space Command and Control Architectural
Infrastructure (SCAI) Air Force/STARS Demonstration Project. Its purpose is to
present the lessons learned in the course of applying Software Technology for
Adaptable, Reliable Systems (STARS) megaprogramming technologies to the SCAI
Demonstration Project. Specifically, the report will present the lessons learned
in applying the formal STARS process driven, technology supported, domain-specific
reuse technologies to:

1) Implement an operational space control capability for the Commander in Chief
(CINC) Mobile Alternate Headquarters (CMAH).

2) Further the establishment of a product-~line organization with the Air Force
Space and Warning Systems Center (SCAI).

DTIC QUALITY ilicFZCTTD o

14. SUBJECT TERMS 15. NUMBER OF PAGES
106
Lessons Learned, Experience, Technology Transition 16 PRICE CODE
N/A
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

AF/STARS

SCA

Space Command and Control Architectural
Infrastructure (SCAI)

Air Force / STARS Demonstration Project

Experience Report

Version 1.1 - 25 July 1994
Prepared Jointly by:

Loral Federal Systems - Gaithersburg

700 North Frederick Avenue
Gaithersburg, MD 20879

and

SWSC/SMX
130 W, Paine Street
Peterson AFB, CO 80914-2320

SCAI Expenience Repont July 25, 1994

SCA! Experience Report July 25, 1994

Preface

This document was developed by the Loral Federal Systems-Gaithersburg, located at 700 North Fredrick Avenue,
Gaithersburg, MD 20879 and SWSC/SMX, 130 West Paine Ftreet, Peterson AFB, CO 80914-2320. Questions or
comments should be directed to Captain Clint Heintzelman 4t 719-554-6533 (cheintze@spacecom.af.mil) or Ms.
Lynn Underhill at 719-554-6579 (underhl@wmavm7.lfs.loral.com).

This document is approved for release under Distribution “C” of Scientific and Technical Information Program Clas-
sification Scheme (DoD Directive 5230.24). Permission to ase, copy, modify, and comment on this document for pur-
poses stated under “C” without fee is hereby granted, provided that this notice appears in each whole or partial copy.

The contents of this document constitute technical informazion developed for internal Government use. The Govern-
ment does not guarantee the accuracy of the contents and does not sponsor the release to third parties whether
engaged in performance of a Government contract or subcontract or otherwise. The Government further disallows
any liability for damages incurred as the result of the dissemination of this information.

The following trademarks are used in this document.

. IBM, AIX, RISC System/6000, SDE Workbench/6000, CMVC Client/6000, and CMVC Server/6000
are trademarks of the International Business Machines Corporation.

. Framemaker is a trademark of Frame Technology Corporation.

. Process Weaver is a trademark of Cap Gemini Sogeti.

. CAT Compass is a trademark of Robbins-Gioia Inc.

. Uniplex is a trademark of Uniplex Integration Systems Inc.

. UNIX is a trademark of AT& T.

. The X-Windows system is a trademark of the Massachusetts Institute of Technology.
. ProjectCatalyst is a trademark of Software Engineering Technologies.

Contributions to this document have been provided by the following organizations: Air Force Space Wamning Systems
Center, CACI, ccPE, Kaman Sciences Corp, Loral Federal Systems, PRC, Rational. SEL, SET, and TRW.

Preface il July 25,1994

Preface

July 25, 1994

Forward

Purpose

This Experience Report is a product of the Space Command and Control Architectural Infrastructure
(SCAI) Air Force/STARS Demonstration Project. Its purpose is to present the lessons learned in the course
of applying Software Technology for Adaptable Reliable Systems (STARS) megaprogramming technolo-
gies to the SCAI Demonstration Project. Specifically the report will present the lessons learned in applying
the formal STARS process driven, technology supported domain-specific reuse technologies to:

(1) Further the establishment of a product-line organization within the Air Force Space and Warn-
ing Systems Center (SWSC).

(2) Implement an operational space control capability for the Commander In Chief (CINC) Mobile
Alternate Headquarters (CMAH).

Audience

This document is targeted to a number of different audiences.
(1) Advanced Research Project Agency (ARPA)

(2) Space and Warning Systems Center (SWSC)
(3) Air Force Space Command ‘
(4) Air Force Materiel Command
(5) Department of Defense Community
(6) Software Engineering Community
Assumptions
This document is written with the following assumptions about its audience:

(1) The reader has a working knowledge of software engineering practices, management, devel-
opment and evolution.

(2) The reader has a working knowledge or an interest in gaining an understanding of the support
elements that make up the STARS megaprogramming paradigm: process-driven develop-
ment, domain-specific reuse, and Software Engineering Environments.

(3) This version of the Experience Report is providing experiences and lessons learned during the
Preparation Phase, the first of three project phases. Experience Reports will be published
during each project phase.

Forward v Tulv 28, 14994

Document Structure

This document is organized into 6 chapters. A description of the contents of each chapter is provided in the
following table (see Table 1)

Chapter Title Description

Provides a summary of the project history, vision,
1 Overview mission, goals. management structure, technical
approach and schedule.

Summarizes the project’s experience in integrating
STARS technologies with incumbent approaches
to develop engineering processes that address the
Domain Engineering/ scope of both Domain and Application Engineer-
Application Engineering | ing.

Summarizes the project’s experience in testing the
applicability of expanding the C2A1 to the space
domain.

Summarizes the project’s experience in preparing
3 Process Support the organization to be process-driven and in devel-
oping the SCAI Process Architecture.

Summarizes the project’s experience in integrating
4 SEE Support and using advanced software tools into a Software
Engineering Environment (SEE).

Summarizes the project’s experience in develop-

5 Metrics ing a metrics strategy, and initializing the metrics
program.
6 Conclusion Final Remarks

TABLE 1. Document Organization

Forward vi July 25,1994

Table of Contents

1.0 L0 L o T 1
1.1 BackgroUNd ...t e e e i e e 1
1.1a The STARS PrOgram ..ottt ittt et i tteatieenatnaseennenasaasenaeeaaas 1
1.1.2 The Air Force Space Command / Space and Warning Systems Center 2
113 The AF/STARS Demonstration Project.co.ovviuiiivenerainenneennnnn. 3
1.2 Vision, Missionand Goalsoiiiiiiiiiiii i i e 4
1.3 Organizational SETUCtUTrettt ittt ittt i iiee e ninaeaannnans 7
14 Overview of Technical Approachccoiiiiiiiiiiii ittt eeeenaes 8
20 Domain Engineering/Application Engineeringccci i, 16
21 IntroduCtion .. oie i e e e e 16
2.2 Preparation Phase Analysisc.ooiiiiiiiii i 17
221 54T 17
222 Summary of Accomplishments i 20
223 AAlYSiS ottt e e et e 21
224 Lessons-Learned ...ttt ittt ettt e 26
225 Recommendationscoiiuiriiniiiiiiiiiiii it ittt 29
3.0 PrOCeSS SUPPOTEottt ittt it iieeeeaarttire ittt e 30
3.1 44T {0 T U T ¢ T R 30
3.2 Preparation Phase Analysiso 3
321 PlaNS Lot i e e e e e e 3
3.2.2 Summary of Accomplishmentso il 35
3.23 T 1 35
3.24 Lessons-Learnedo.uuiiiiiiiniiiiiiiii ittt 36
3.25 Recommendationscooiiiiiiiiiiiiiiiiii i e 37
4.0 SEE SUPPOTt ...\ttt i it e e i e 38
4.1 Introduction . ..o e e e e 38
4.2 Preparation Phase Analysisciii i 38
4.2.1 50 - 13 38
4.2.2 Summary of Accomplishmentsc i i 40
423 Analysis e 40
424 Lessons-Learnedo ittt ittt s 43
425 Recommendationscoi ittt 43
5.0 L £ 4 (N 45
5.1 Introductiono e e 45
5.2 Preparation Phase Analysisottt e 45
5.2.1 0 1O 45
5.2.2 Summary of Accomplishmentscoiiiiiiiiii ittt 47
5.2.3 ANAlYSIS . e e e 47
524 Lessons-Learnedooiuiiiiiiiiiii i i i i e e e e 48
525 Recommendationsoiniiiiiiii i e 49
6.0 L1} Tu LT3 T O N 51

Appendices

A Acronymsand Definitions i e e e A-1
B. Technologies Contributing to SCAL ittt iiierrnesroesonscencnsns B-1
C. Megaprogramming: Enabling the Future SWSC Product-Line........................ C-1
D. Iterative Technology Assimilation and Evolution D-1
E. Preliminary DE/AE Approach ittt it et e E-1

Table of Contents vii July 25, 1994

List of Figures

Figure 1 Current Systems Of CMAFBiuiiii ittt ce it iai e eiaans 2
Figure 2 Megaprogramming: Enabling a Future Product-line Organization 9
Figure 3 Conceptual Framework for Reuse Processes (CFRP)oouvniiiiiiininiiein..n. 12
Figure 4 Project Schedulet e e e e 15
Figure 5 Relationship of DE/ AE Activities to Other Project Areascovvienienennnn.. 17
Figure 6 Process Architecture Concept ...o.veir i e 32
Figure 7 SCAIProcess Planning Stepstueiitiinnintinteereneeneaneeanennnnnens 33
Figure 8 Process Cycle: Definition, Automation, Use, Improvementc..covvieinnuenn. 34
Figure 9 Integration Areas i e e 42
Figure 10 D L4 Lo B (0T 46
List of Figures vini May 13, 1994

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

List of Tables

STARS View of AF/STARS Demonstration Projectovveueviniineinneeennnnns 5
Government INterfacesouuiiineieirennet it niiereieeeaieareannnnn. 7
Contractor Interfacescoiuiiiuvnt ittt ittt et 8
Applicability of Project Goals to Key Technology Areascvvirenrnnnnnnn... 11
Background Technologies and TOOISvenuiniieniniiieniiieniainnannennns 14
Relationships between Preparation Phase Activities and Objectives 20

List of Tables

X July 25, 1994

Executive Summary

The Space Command and Control Architectural Infrastructure (SCAI) Demonstration Project was selected
as the Air Force Software Technology for Adaptable, Reliable Systems (STARS) Demonstration Project and
paired with Loral Federal Systems, Gaithersburg, MD. The project is administrated by the Air Force Space
Command (AFSPC) Space and Warning Systems Center (SWSC). It is a three year program which is being
conducted from October 1992 through October 1995. The partnership was chartered by a Memorandum of
Agreement (MOA) signed between the .1ir Force and ARPA.

The MOA defines the scope of the Demonstration Project as a joint project to apply the STARS megapro-
gramming paradigm to the current space mission. Megaprogramming is defined by the STARS program as
“process-driven, domain-specific reuse based, technology supported” software development. Personnel
from LORAL Federal Systems, one of the STARS prime contractors, are partners with the SCAI team.
CAC], ccPE, Kaman Sciences Corp, PRC, Rational, Robbins Gioia, SET, and TRW perform various contrac-
tor roles on the project.

Air Force Space Command is responsible for the maintenance of Cheyenne Mountain Command and Con-
trol Systems and is interested in using new software technologies to realize lower maintenance costs and
improve quality and reliability. The AFSPC SWSC has the mission to:

(1) Support combat operations by developing and maintaining mission-critical software to
meet the requirements of North American Aerospace Defense Command (NORAD), United
States Space Command (USSPACECOM) and AFSPC command, control and intelligence
centers.

(2) Ensure the operational and technical integrity of national attack warning and space control
systems and provide space and warning software engineering and configuration manage-
ment.

The STARS megaprogramming and Reusable Integrated Command Center (RICC) architecture infrastruc-
ture technologies are to be demonstrated by using them to develop an operational space capability for the
Commander in Chief (CINC) Mobile Alternate Headquarters (CMAH). Following the success of the SCAI
project the technologies will be transitioned for use throughout the SWSC organization.

AFSPC is applying new software technologies, like Open Systems Environments, to realize lower mainte-
nance costs and improve quality and reliability. The Reusable Integrated Command Center (RICC) tech-
nology, developed for the SWSC by TRW under the Air Force Embedded Computer Resource Support
Improvement Program (ESID), is the first set of artifacts to result from the SWSC effort to implement a
common architectural approach. This technology includes tools for generating Ada code, application defi-
nition files, and reusable domain components.

The SCAI project has the following objectives:

(1) Apply the Reusable Integrated Command Center (RICC) technology to SCAI development
and demonstrate its benefit.

(2) Institute cooperating Domain Engineering and Application Engineering (DE/ AE) processes
including those for ongoing process improvement.

(3) Instantiate a process driven Software Engineering Environment to support megaprogram-
ming.

(4) Demonstrate that the SCAl application was built “cheaper, better, and faster” using the new
process.

Executive Summary xi July 25,1994

The Domain Engineering life-cycle supports the establishment of a product-line within the SCAI domain.
Domain Engineering is defined as the analysis performed across a family of systems to determine the com-
monality and variability within the domain. The systems’ common assets are represented in models and
architecture, which provide the framework for developing reusable assets, and for reusing those assets
across the product-line during Application Engineering.

The Application Engineering life-cycle is defined by the engineering activities required to develop the
space control software for the CMAH. The capability being implemented will be limited to the functional-
ity needed to

{1} maintain the satellite catalog to a level of accuracy sufficient for space surveillance sensors
to acquire observations on tasked satellites,

(2) process major space surveillance events, and
(3) process major space threat events.

The functions are modeled after identical functions currently incorporated in Space Defense Operations
Center (SPADOC) 4C, V1, and planned for SPADOC 4C, V2. The operator interface to these functions is to
have the look and feel of SPADOC 4C, although user approved deviations are permitted in order to adhere
to austerity guidelines, to comply with open systems standards such as X Windows, or when feasible, to
provide enhancements.

Metrics are being collected and are tied to the project goals through critical success factors identified for
each goal and are designed to give project members visibility into how well the project is doing in attain-
ing the goals. To-date, effort (man-hours/work breakdown structure task) is the primary metric being col-
lected. However, software tool usage, SEE utilization and schedule/resource prediction features are all
targets of interest for collection during the Performance Phase.

This version of the Experience Report provides project background information, the project experiences
and lessons learned for each of the megaprogramming focus areas, during the Preparation Phase of the
Demonstration Project. Subsequent Experience Reports will be delivered yearly and will provide the expe-
riences and lessons learned during the Performance and Reflection Phases of the project.

The project has made significant progress in the following areas:

(1) Development of an Application Engineering Process and project consensus on that process.

(2) Development of project consensus on the Architectural Framework and the domain/appli-
cation modeling artifacts.

(3) Demonstration that the Architectural Infrastructure is applicable to other C2 domains.

The primary lessons-learned during the Preparation Phase (October 1992-October 1993) are:

(1) The SCAI team has elaborated the STARS Two Life-Cycle Model to show very close interac-
tion between Domain Engineering and Application Engineering, in order to constantly vali-
date the domain models against real applications in the domain. The models must be
developed iteratively to avoid the creation of complete but invalidated models. In fact, the
team has developed a working hypothesis that application level models, to a large extent,
should be views of domain level models.

(2) Architectural layering in the SWSC domain provides good guidance for forming the func-
tional organizations needed to support the product-line (hypothesis partially validated by
experience to date).

(3) The Plan/Enact/Learn paradigm, claborated in the STARS Conceptual Framework For
Reuse Processes (CFRP), applies to all major project activities, including the formulation of
the project’s approaches and processes as well as the development of the domain and appli-

lixecutive Summary xii July 25, 1994

cation products. Since an organization seeking to transition to megaprogramming can antic-
ipate a significant amount of technology transition and integration, it should consciously
plan an incremental huild up of its approach.

(4) How technology is transitioned between organizations is as important as the technologies
that are transitioned. This project spent a lot of time becoming familiar with all of the tech-
nologies prior to being able to integrate them into an approach. This was true for developing
our approach for defining project processes as well as for defining our Domain/Application

Engineering approach.

(5) Acquisition and integration for the SEE should be planned and developed in step with the
incremental development of the process.

(6) Metrics definitions can be used to help the project focus on goals and success indicators
early in project life-cycle. We successfully adjusted the Goal/Question/Metrics (GQM)
approach to construe the questions as success indicators. Small focus groups of 2 to 5 people
were an efficient way to refine goals, subgoals and success indicators to express the projects

focus.

The remainder of the Experience Report provides an overview of the SCAI project approach and the expe-
rience gained during the Preparation Phase (October 1992 through October 1993). The report will be
updated at the end of 1994, mid-way through the project, and in early 1996, at the completion of the

project.

Executive Summary xin July 2§, 1994

1.0 Overview

The purpose of this report is to present the experience and lessons-learned in the course of applying
STARS megaprogramming technologies to the SCAI Demonstration Project. The report covers experiences
related to Domain Engineering/ Application Engineering, Process Support, Software Engjincering Environ-
ment Support, and Metrics. For each of the above areas the report provides a brief desc-iption and over-
view, followed by plans, summary of accomplishments, lessons-learned, and recommendations.

This section provides introductory material that provides context for the experience sections that comprise
the remainder of the report. The following topics are covered:

(1) Background - provides a brief discussion of the STARS program, the Air Force organization
paired with STARS for the Demonstration Project, and the nature of the project itself;

(2) Vision, Mission, and Goals - provides the long-range and short-term motivations for the
project;

(3) Project Organization - discusses the Air Force organization responsible for the Demonstra-
tion Project, as well as the relevance of the project to several outside organizations; and

(4) Overview of Technical Approach - introduces the technologies being applied to the project,
and the approach being used to combine them into a practical megaprogramming process.

1.1 Background

This subsection provides brief discussions of the STARS program, the Air Force organization paired with
STARS for the Demonstration Project, arid the nature of the project itself.

1.1.1 The STARS Program

The Advanced Research Project Agency (ARPA) STARS Prime program was initiated in 1988 to create
cooperative development work from a very broad industry experience base, reduce risk, and accelerate
acceptance of changing technology. The contract was awarded to three leading defense systems integra-
tors, Boeing Aerospace Company, IBM Federal Systems Division (now Loral Federal Systems), and Unisys
Defense Systems.

The current STARS program is a technology development, integration and transition program to demon-
strate a process-driven, domain specific, reuse-based approach to software engineering that is supported
by appropriate tool and environment technology. This approach is often referred to as “megaprogram-
ming”.

Megaprogramming is a product-line (family of systems) approach to the creation and maintenance of soft-
ware intensive systems. It is characterized by the reuse of software life-cycle assets within a product-line
including common architecture and components. Megaprogramming also includes the definition and
enactment of disciplined processes for the development of applications within the product-line and for the
development and evolution of the product-line itself.

A mission of the STARS program is to accelerate the transition to the megaprcgramming paradigm. To
accomplish this, STARS is jointly sponsoring Demonstration Projects with each of the three Services. The
major objectives for each of the projects are to:

(1) Apply a megaprogramming paradigm to the development of software for an actual DoD
system. The system will be produced using new approaches, and will establish the credibil-
ity of the megaprogramming approach.

1. Abstracted from a paper titled STARS Program History 1983-1993 Version 1.1 assembled by Joel Trimbie

Overview 1 July 25, 1994

(2) Make quantitative and qualitative measures of the effects of megaprogramming on the
development effort and the resulting product. Produce reports documenting lessons learned
in applying megaprogramming that will help others as they begin using megaprogramming
and provide feedback on how tcols and processes worked in practice.

(3) Transition to the Demonstration Project organization the capability to practice megapro-
gramming. When this demonstration is over, the Demonstration Project organization will be
able to continue using megaprogramming on this project and should be able to apply mega-
programming to other projects without assistance from STARS.

1.1.2 The Air Force Space Command / Space and Warning Systems Center

Air Force Space Command (AFSPC) is responsible for the maintenance of Cheyenne Mountain Command
and Control Systems (see Figure 1) and is interested in applying new software technologies to realize
lower maintenance costs and improve quality and reliability. The AFSPC Space and Warning Systems Cen-
ter (SWSC) has the mission to:

(1) Support combat operations by developing and maintaining mission-critical software to meet
the requirements of North American Aerospace Defense Command (NORAD), United
States Space Command (USSPACECOM) and AFSPC command, control and intelligence
centers.

(2) Ensure the uperational and technical integrity of national attack warning and space control
systems and provide space and warning software engineering and configuration manage-

ment.
Forward a
ﬂﬂ Wespon : ﬁ
Systems : , ° Satellite
Systems

Intelligence
Sensor ?ystegms
tems

(Air, Missile &Space)

Figure 1. Current Systems of CMAFB

The AFSPC legacy predates the recognition of the importance of a disciplined software engineering pro-
cess. Stovepipe’ implementations have precluded reuse, diverse tools and methods have precluded

1. No intent to share architecture or information exceplt at interfaces.

L]

Overview July 25, 1994

resource sharing and system-oriented organizations have precluded the transfer of technologies. AFSPC
currently maintains in excess of 10 million lines of code on 27 separate operational systems written in 24
languages.

In 1990 the AFSPC SWSC initiated an effort to develop a strategy to move to an architecture based on Open
Systems Environments as quickly as possible. While the SWSC usually procures systems through Elec-
tronic Systems Center (ESC), in some cases, on an experimental basis, the SWSC has attempted to perform
some new development itself. As a result of one of these experiments, the SWSC, in cooperation with TRW,
set about to demonstrate large scale reusz. They developed a set of architectural components, called the
Command and Control Architecture Infrastructure (C2Al), that promises to significantly reduce systems
development time and cost while increasing quality.

The concept for the C2Al was developed in the SWSC as a result of analyzing the systems that the SWSC is
responsible for. Leveraging work accomplished by TRW on a production contract called CCPDS-R (Com-
mand Center Processing and Display System Replacement), the SWSC contracted TRW to advance
CCPDS-R techniques and demonstrate a subset of the Cheyenne Mountain Missile Warning requirements,
on a pilot program called the Reusable Integrated Command Center (RICC).

1.1.3 The AF/STARS Demonstration Project

The Space Command and Control Architectural Infrastructure (SCAI) Demonstration Project was selected
as the Air Force STARS Demonstration Project and paired with Loral Federal Systems. The project is
administrated by the Air Force Space Command (AFSPC) Space and Warning Systems Center (SWSC). It is
a three year program which is being conducted from October 1992 through October 1995.

The Air Force selected the SCAI Demonstration Project to be their STARS Demonstration Project. The
progress the SWSC had made in the analysis of the C2 domain, the definition of the architectural infra-
structure and the infrastructure’s promise to significantly reduce systems development time and cost
made the SWSC an ideal partner. Not only had the SWSC begun megaprogramming work, they were
ready and interested in developing quantitative and qualitative measures of the effects of that work. The
SWSC expects to profit from its partnership with STARS by accelerating its shift to megaprogramming,
using STARS technologies in the following areas:

(1) Reuse-based engineering - instituting a product-line “Domain Engineering” process that
focuses on identifying and exploiting the commonality in the domain family of interest.

(2) Process-driven development - planning, and enacting the software development and main-
tenance process in a disciplined, repeatable way.

(3) Technology-supported process - providing an open and extendable Software Engineering
Environment that provides an advanced level of integrated support for the process.

The purpose of the SCAI Demonstration Project is to apply the STARS megaprogramming software engi-
neering approach and the C“Al to the current space mission. The space algorithms written in FORTRAN
will be re-engineered into Ada components and existing AFSPC Command and Control Architectural
Infrastructure components will be evolved and integrated into a new space operations control capability
for the Commander In Chief (CINC) Mobile Alternate Headquarters (CMAH). The capability to be imple-
mented will be limited to the functionality needed to:

(1) Maintain the satellite catalog to a level of accuracy sufficient for space surveillance sensors
to acquire observations on tasked satellites,

(2) Process major space surveillance events, and
(3) Process major space threat events.

The functions will be modeled after identical functions currently incorporated in Space Defense Operations
Center (SPADOC) 4C, V1, and planned for SPADOC 4C, V2. The operator interface to these functions will

Overview 3 July 25. 1994

have the look and feel of SPADOC 4C, although user approved deviations will be permitted in order to ad-
here to austerity guidelines, to comply with open systems standards such as X Windows, or when feasible,
to provide enhancements.

SCAI will be capable of rapidly accepting and storing satellite catalog and sensor observation data from
SPADOC and, in turn, providing this data to SPADOC. SCAI will run in two modes, ah on-line mode and
an off-line mode. In the on-line mode, SCAI will maintain the catalog autonomous.y, and will process both
major space surveillance and space threat events. In the off-line mode, SCAI will accept the SPADOC 4C
database and update its own database with the current element sets and observations at user-specified time
intervals. No observations or events will be processed in the off-line mode.

The products and applications developed in the SCAI effort will follow an evclutionary path from the
STARS Demonstration Project to a fully deployable system for the United States Space Command (USS-
PACECOM), with reusable components capable of satisfying other Command arnd Control missions.

The SCAI System will be integrated into the Mobile Command and Control System (MCCS) development
program.The mission of the MCCS is to provide automated Command, Control, and Communications (C
for the NORAD and USSPACECOM Mobile Consolidated Command Center (MCCC). In the operational
environment, the MCCC vans are geographically dispersed so that essential command and control func-
tions are available should communications with the Cheyenne Mountain Complex (CMC) be lost. Under
the Mission Support Segment (MSS) of the MCCS :Program, Space Control, Air Defense, and Missile Warn-
ing missions will be combined into an integrated C”system, using STARS development technologies to their
fullest potential.

1.2 Vision, Mission and Goals

The SCAI team has evolved the following statements of vision and intent associated with the Demonstra-
tion Project.

SWSC Vision in Connection with the Demonstration Project:

We are a highly productive, thriving engineering team, using megaprogramming
to provide mission-effective systems in our product-line, and delighting our cus-
tomers with our quality and responsiveness.

SMX Mission during the Demonstration Project Time Frame:

Formalize a practical megaprogramming process that combines the best of the
STARS and RICC technologies, proving its viability by building and deploying an
operational system in the space and warning domain and initiating the transition
of the process and technology throughout the SWSC.

SCAI Demonstration Project Goals:

The goals for the Demonstration Project are based on the above vision and mission statements and are a
joint AF/STARS work product. The team considers these goals to be central to the project’s strategy. They
provide the motivational basis for all key project activities: notably, the project planning, the process defi-
nition and enactment work, and the metrics activity.

Overview 4 July 25, 1994

Table 8 presents a top level view of the SCAI goals from a perspective that is consistent across all three
STARS Demonstration Projects.

Capability Current Baseline SCAI Goals Orgavniiszi:t;onal
Product/Approach Institutionalization
———————— H—
FORTRAN, JOVIAL, | Re-engineered in :‘:;ls“g;‘;:ﬁ;e:g';]
Space Software Baseline || Assembler. (3.5M Ada using system mon models and
LOC) architecture. ,
reusable assets.
Software Process Defined high level Partial process- Managed with con-
(SWSC) processes. Repeat- driven, reuse-based tinuous process
able at lower levels. capability improvement.
Prototype architec- 2:$:l:nr§?:;\ei-tec-
Software Reuse tural infrastructure tural models Product-line process
(SWSC) with code genera- domain libra’ & with managed reuse.
tors (UNAS & RICC). 4
reusable assets.
Software Architecture System-specific/evo- Evolution enabled SWSC-wide architec-
(SWSC) lution limited tural strategy.
Software Engineering Partial enactment Adapt;&génsiri
Environment I System-specific with integrated pro- open. SW d
cesses strategy, integrate |
(SWSsC) assets
People Skills Diverse, system-spe- | Trained in SCAI go;:;s?:r%r:(;lg‘ilc\tri ol-
& (SWSC) cific technologies L;gne

TABLE 1. STARS View of AF/STARS Demonstration Project

This high-level depiction summarizes the Demonstration Project objectives according to a set of categories
that were developed cooperatively by all three Demonstration Projects. Interested readers may wish to
refer to the other two projects’ experience reports to compare the ways the three projects are interpreting
these common categories.

The information in the table was derived from a much more detailed set of goals that were developed by
the SCAI team during the Preparation Phase. The SCAI goals are mapped into three major groupings:
product goals, approach goals, and institutionalization goals. The rightmost two columns indicate how
these goal groupings map to the information in the table: the SCAI Goals column was derived from the
more detailed product and approach goals adopted by the SCAI team, and the Organizational Vision col-
umn was derived from the more detailed institutionalization goals.

The following paragraphs provide a synopsis of the specific SCAI goals.
(1) Product Goals

Theme: Build a Real System

e Develop a space mission capability suitable for operational deployment by October,
1995.

The system must fulfill a usable subset of existing CMC Space Mission capability, be
approved by users, meet approved QA/CM requirements, and realize key product

Overview 5 July 25, 1994

quality characteristics. It is assumed that there will be no extensive training of users
required (no more than a 1/2 day for experienced users), and that the users will have
the opportunity to accept the system incrementally as it is developed. The system is
expected to be maintainable, new capabilities added easily, and operator productivity
should be as good or better than with current systems.

Develop reusable domain assets.

The development of the space mission capability must produce a legacy of reusable
assets to include an architecture, models, components and processes. These artifacts
should be documented, catalogued, understandable and usable.

(2) Approach Goals

Theme: Demonstrate the benefits of using a practical megaprogramming approach that combines the
best of the STARS and RICC technologies to build the system

Apply the RICC technology to SCAI development and demonstrate its benefit.

The team will establish the benefits of using the RICC technologies in terms of

-reduced cost and schedule to develop and maintain the system. The amount of code

automatically generated will be tracked, as well as the effort and schedule to obtain
it. Cost associated with generated code will be compared with cost to develop hand
crafted code. The team will monitor software problem reports produced for each
code type, and track the reuse of RICC artifacts.

Institute cooperating Domain Engineering and Application Engineering (DE/ AE)
processes including those for ongoing process improvements.

There are many benefits attributed to a process-driven domain specific reuse
approach to developing systems. These benefits include reduced cost, shortened
development time, increased productivity and decreased risk. The SCAI
Demonstration Project is an opportunity to invest in furthering a megaprogramming
approach in the SWSC’s command and control system domain. Given that there is an
established C2AI product-line, the intent of the AF/STARS SCAI Demonstration
Project is to demonstrate the benefits associated with domain-specific reuse across
the C2AI domain, establish a process for continuously uncovering reuse artifacts and
formalizing the domain models and architecture.

Instantiate a process-driven SEE to support megaprogramming.

Build a Software Engineering Environment that guides the engineering team in
following their processes to create quality work products. The SEE must be
affordable, and used by developers to do their work. It needs to adhere to standard
open interfaces, and have a significant percentage of the commercially available
products available on the IBM RISC 6000 and at least two other competing vendor
platforms. New capabilities will be able to be easily added and users of the SEE will
actively participate in identifying SEE improvements.

Demonstrate that the SCAl application was built “cheaper, better, and faster” using
the new process.

The SCAI project is in a unique position to demonstrate that applications built using
megaprogramming technologics are built “cheaper, better, and faster”. The
architecture megaprogramming work that had already been done, when the project
started will offer a unique opportunity to measure the benefits of reusing the domain
assets.

Overview

6 July 25, 1994

3)

Institutionalization Goals

Theme: Initiate the institutionalization to the SWSC megaprogramming paradigm used to develop
the SCAL

Demonstrate widespread dissemination of technology expertise within the SWSC
organization and its contractors.

“stablish a product-line organization and infrastructure, managing the evolution of
multiple application systems.

The organization will have a product-line manager responsible for approach, domain
assets, process driven approach, and technology support and evolution. Users of the
system will be an integral part of the total development/maintenance life-cycle.

There will be a domain asset library and processes in place for managing and
controlling the C“Al and associated generators, reusable components, models,
process assets, archives, and generic plans and cost models. The SCAI will gain
commitment for an additional system to be managed by the product-line

organization.

e Transition technology/assets to another organization for their own pilot application.

1.3 Organizational Structure

The SCAI project is under the auspices of the Plans and Engineering directorate (SMX) of the Space and
Warning Systems Center (SWSC). The SWSC is a direct reporting unit under AFSPC Communications and
Computer Systems Directorate. SCAI will use the SWSC expertise as required to help ensure the successful

accomplishment of the AF/STARS project.

There are a number of government agencies as shown in Table 9 which will interface with the SMX to sup-
port the SCAI project. Table 10 lists the contractors directly performing the SCAI project.

Government Interface :H Purpose
USSPACECOM Command Center personnel Mission Expertise
& AFSPC SC, DR & XP P

Advanced Research Projects Agency (ARPA)
with the STARS program office

Megaprogramming

Defense Information System Agency (DISA)
Center for Information Management

Information Engineering

Software Engineering Institute (SEI)

Software Engineering Process

Embedded Computer Technology Resources
Support Improvement Program (ESIP)

Command, Control, Communica-
tions and Intellegence

TABLE 2. Government Interfaces

Overview 7

July 25, 1994

Contractor Interfaces Purpose

Loral Federal Systems Technology and support
Kaman Science Corp. Engineering analysis and Application Engineering
PRC Information engineering and process definition
. Ada programming environment, process definition
Rational .
and Booch methodology expertise
CACI Domain Engineering and process definition
C”l architectural infrastructure (RICC), process defini-
TRW tion (TRW Ada process model) and systems integra-
tion

TABLE 3. Contractor Interfaces

1.4 Overview of Technical Approach

The Air Force’s long-range objective is to realize a product-line organization, in which a wide range of its
applications are developed and maintained using a coherent megaprogramming process. The partnership
with STARS on the SCAI Demonstration Project is helping the Air Force accelerate its progress toward this
objective.

The SWSC is responsible for the maintenance of a wide range of space and warning Czapplications. The
SWSC's long-range intent is to manage as many systems as possible within this domain of applications
using a coherent process; and the envisioned product-line organization is intended to facilitate this type of
management. There are three fundamental prerequisites for a successful product-line organization: a
domain manager responsible for all applications in the product-line, sufficient commonality among the
applications to allow management of the entire set as a whole, and enabling technology to facilitate the
systematic management and engineering work.

To prepare for this type of organization, the SWSC is working with STARS to mature its technological
approach, using the SCAI Demonstration Project as its primary vehicle.

Figure 2 depicts the SWSC’s current concept of the future product-line organization and illustrates the role
of the STARS megaprogramming technology areas in working towards this organizational objective.
Appendix C has further discussion of this topic.

Overview 8 July 25, 1994

Product-line Organization Mrggﬁggga;/mgg;g

*Plans, Policies
Space & Waming #Resource Alloc f
Product-tine *Mgt Support S&W ¢ Architecture
Domain *Domain Modeling
ngineering

*Reuse Management
*Reuse Strate;

'%main Models :
. *Domain
Space Sub-Family = % Systematic
Asset } *Two Life-Cycle model Process
agemen eDomain mgt strategy
*Reuse Library #State-of-the-art processes
«Configuration Mgt *Process Definition
sImprovement Process
*Metrics
Support
*SEE .
*Process *Open arch, COTS tools

*Methods ¢Process-support tools
*Process-centric integration
- Plan tied to process
- Tool use tied to process

- Data mgt tied to process

Automated
Support

Figure 2. Megaprogramming: Enabling a Future Product-line Organization

This Experience Report includes four major sections providing the project’s experience during the Prepara-
tion Phase of the Demonstration Project:

“Section 2.0, Domain Engineering/Application Engineering”

The central theme of STARS megaprogramming is enabling systematic reuse across a
product-line of application. STARS advocates that the product-line organization institute a
Two Life-Cycle process model, with Domain Engineering determining how to exploit the
commonalities across the applications, and Application Engineering developing each
application in accordance with the common approach and common assets identified by
Domain Engineering. One of the key lessons learned by the SCAI team during the Prepa-
ration Phase is that Domain Engineering and Application Engineering are identical in
many respects - so much so that it proves awkward to discuss them separately. For this
experience report, they are treated as a single topic.

Prior to the formation of the partnership with STARS, the SWSC had already recognized
the importance of domain-specific reuse and had launched a number of informal Domain
Engineering activities. One of the key objectives of the partnership was to transform these
informal activities into a systematic process. During the Preparation Phase, the team suc-
ceeded in formulating the SCAI DE/AE approach and defining an overall process archi-
tecture. This experience report topic deals with the work that was done during the
Preparation Phase to define the approach. It also provides a brief description of the result-
ing approach itself. By the end of the Preparation Phase, the team had begun formal pro-
cess definition work, based on the process architecture. The general-purpose techniques
being used to define the DE/ AE process are discussed in the Process Support section of
the report.

Overview 9 July 25, 1994

“Section 3.0, Process Support”

The STARS concept of megaprogramming calls for concerted attention to process: in order
to enable a product-line with effective domain-specific reuse, a systematic process (inciud-
ing a process-improvement process) is required.

Whereas the prior section discussed the work done in the Preparation Phase to define the
Domain Engineering/ Application Engineering process, this section deals with the tech-
nology used to support that process definition - as well as exploratory work taat was done
to prepare for process enactment.

“Section 4.0, SEE Support”

Megaprogramming, according to STARS, requires a significant level of SEE support to
proviae automated assistance to the product-line’s process definition ard enactment. Dur-
ing the Preparation Phase, the Loral/STARS team continued work on a process-support
tool set that is intended for use during the Performance Phase. In the absence of full defi-
nition of the SCAI process, it was not possible to finalize the SEE configuration. Certain
assumptions about the process were possible, however, allowing the tcam to install an ini-
tial increment of SEE workstations and to populate them with software tools to support
key process activities. In addition, a preliminary SEE integration strategy was established,
centered around AIX Workbench as the underlying tool-integration framework and the
STARS-sponsored process-support tool suite as the basis for process control integration.

“Section 5.0, Metrics”

Metrics are instrumental in providing information to quantify software life-cycle cost,
quality, and capability differences resulting from the presence and absence of megapro-
gramming technologies. The SCAI project will quantitatively and qualitatively measure
the effects of megaprogramming on the development effort and the resulting product.
During the Preparation Phase, the SCAI team formulated a preliminary metrics process.
The foundation for the metrics process is the formally defined set of project goals. The
team defined the project goals (refer to Section 1.2, Vision, Mission and Goals) and began
detailing the metrics collection and analysis approach.

The remainder of the Overview section provides additional background information to set the context for
the other sections of the experience report. Applicbility of Demonstration Project Goals to Key Technology
Areas relates the Demonstration Project goals to the above defined experience areas. Iterative Technology
Assimilation and Evolution: Applicability of the STARS CRFP discusses the inherently iterative nature of
formulating a coherent technical approach - a principle espoused by the STARS Conceptual Framework for
Reuse Processes (CFRP). Background Technologies and Tools then enumerates some of the specific tech-
nologies and tools that were assessed, adapted and combined in order to define the approach. Finally,
Project Schedule presents an overview of the project schedule.

Overview

10 July 25, 1994

Applicability of Demonstration Project Goals to Key Technology Areas

Table 11 lists the Demonstration Project goals presented in Section 1.2 and indicates how each of the four
major experience areas address them. In this table, the letter P is used to designate goals that are consid-
ered primary focuses of the area; S is used to designate goals that are supported to a significant degree by

the area.

Experience Area

Demonstration Project Goal

Domain /
Application
Support
SEE
Support
Metrics

Process

PRODUCT GOALS

Develop a space mission capability suitable for opera-
tional deployment by October, 1995.

Develop reusable domain assets

APPROACH GOALS

Apply the RICC technology to SCAI development and
demonstrate its benefit.

Institute cooperating Domain Engineering and Applica-

tion Engineering (DE/AE) processes including those for | P P

ongoing process improvements.

Instantiate a process-driven SEE to support megapro- S P S
gramming

Demonstrate that the SCAI application was built S S P

“cheaper, better, and faster” using the new process

INSTITUTIONALIZATION GOALS

Demonstrate widespread dissemination of technology
expertise within the SWSC organization and its co ‘rac-
tors

Establish a product-line organization and infrastructure,
managing the evolution of multiple application systems

Transition technology/assets to another organization for
their own pilot application

TABLE 4. Applicability of Project Goals to Key Technology Areas

Overview

Jaly 25,1994

Iterative Technology Assimilation and Evolution: Applicability of the STARS CFRP

One of the key principles espoused by STARS is the Plan/Enact/Learn paradigm, as detailed in the STARS
Conceptual Framework for Reuse Processes (CFRP), as illustrated in Figure 3.

Market Forces
Assets
Software Sg'stems
Organizational Context
main Knowledge

Technology

l

(Reuse Managemernt \

Plan Learn

Create

Software Systems

Figure 3. Conceptual Framework for Reuse Processes (CFRP)

The essence of this framework is that introducing anything significantly new is best viewed as an iterative
undertaking; and that if the intent is to reuse the results, the iteration must be consciously managed. Thus,
incremental changes are planned, the changes are applied, and the experience gained in applying the
changes is used to adjust the plan for the next iteration.

For the SCAI project, it is meaningful to consider the CFRP from various points of view, notably:
(1) Formulating an overall technical approach,

(2) Formulating specific approaches for each of the three megaprogramming technology
“rrusts,

(3) Developing reusable assets for the domain, and

Overview 12 July 25, 1994

(4) Developing the SCAI application, including reuse of domain assets.

The first two deal with technology transition and process definition, which were the main activities
addressed by the team during the Preparation Phase. The last two deal with producing application and
domain products. At first glance, the CFRP seems to pertain primarily to items 3 and 4, but the SCAI
team’s experience has demonstrated that it in fact pertains equally well to items 1 and 2. If this fact had
been better appreciated at the outset, the team might have been able to achieve consensus on the approach
more quickly.

In general, the team has found that an iterative approach permeates nearly all significant technical activi-
ties.

Reviewing the experience across all major Preparation Phase activities, the SCAI team has concluded the
following;:

Lesson-Learned: The Plan/Enact/Learn paradigm, elaborated in the STARS Conceptual Framework for
Reuse Processes (CFRP), applies to all major project activities - including the formulation of the project’s
approaches and processes as well as the development of its domain and application products.
Recommendation: Since an organization seeking to transition to megaprogramming can anticipate a sig-
nificant amount of technology transition and integration, it should consciously plan an incremental build
up of its approach.

Refer to Appendix D for a more detailed discussion of the Preparation Phase experience that has led the
team to these conclusions.

Overview 13 July 25, 1994

Background Technologies and Tools

Formulating the SCAI technical approach involved evaluating a number of state-of-the-art technologies
and tools, deciding which were most applicable, and determining how best to adapt and combine them.
Although this proved to be a significant challenge, by the end of the Preparation Phase the team had
agreed on the overall approach and had defined a preliminary process architecture.

Table 12 identifies some of the more sigr.ificant technologies and tools that were considered. All of these
technologies and tools are discussed in the four major experience report sections that follow. In addition,
Appendix B provides further details for those items flagged with an asterisk (*) in the table.

The table divides the technologies and tools into three categories. Incumbent SWSC Technologies and
Tools are those that were either already in use at the SWSC or had been pre-selected by Air Force manage-
ment. STARS-Sponsored Technologies and Tools are those that had been developed or adopted by STARS
as enabling technologies in support of megaprogramming. Jointly Developed Technologies and Tools are

those that were formulated during the Preparation Phase by the AF/STARS team.

Incumbent SWSC STARS-Sponsored Jointly Developed
Technologies and Tools Technologies and Tools Technologies and Tools
Conceptual Framework
CIM IDEFgModeling * for Reuse Processes
Mission Operation/Informa- (CFRP)
tion Analysis (MOIA)* Two Life-Cycle Model for
* Coordinated DE/ AE Pro-
DE/AE Ada Process Model cevses
Booch Object Oriented Analy-
sis* Domain Analysis Pro-
RICC-based Architectural cess Model (DAPM)
Infrastructure* Cleanroom Software
Engineering Process *
) Process Driven Manage-
Process ggoerri(;l:tt;rl:gg;?l?\tilg:tx: " ment and Engineering Information Organizer
Approach * ; *
(CIM) IDEFyModeling * PP , Templates (with SED
ETVX Process Modeling
Software Process Man-
Reusable Integrated Com- agement System (SPMS)*
SEE mand Center (RICC) Tool Set* CAT/Compass*
Rational Ada Support Tool Set | Project Catalyst*
Process Weaver*
. . Goal-based Metrics
Metrics Amadeus Process
TABLE 5. Background Technologies and Tools
Project Schedule

The Demonstration Project is performed during the three phases described below and shown in Figure 4.
The three phases are:

(1) A Preparation Phase where the goal is to ensure that all the technologies, assets, and train-
ing required to support use of the megaprogramming paradigm are in place.

July 25, 1994

Overview 14

Dec 92 Oct 93 Dec 93 Jun 94 Dec 94 Jun 95 Dec 95 Jun 96
L | | l | I 4 l |

......................... . - . . - Domain Engineerin .
Domain Model

Domain Arch

Reusable Assets

SCAT Process

V10(

' 'lPl'-e‘p‘aratidn Phase ~ Performance Phase S " Reflection Phase

Figure 4. Project Schedule

(2) A Performance Phase where the goal is to apply and measure the use of megaprogramming
technologies to establishing a product-line organization with the SWSC, and implementing
an operational space control capability for the CMAH.

(3) A Reflection Phase, where the goal is to produce reports and presentations that document
the significant results from the Demonstration Project, including lessons learned that will
help others in adopting the megaprogramming approach. Reports will also be generated
which quantify or project the benefits obtainable from the use of megaprogramming.

The remaining sections of the document describe the major technology areas of the SCAI project, in terms
of objectives, plans, experience, lessons, and recommendations.

Overview 15 July 25. 1994

2.0 Domain Engineering/Application Engineering

2.1 Introduction

The central theme of STARS megaprogramming is enabling large-scale systematic reuse across a product-
line of applications. STARS advocates that the product-line organization institute a Two Life-Cycle prccess
model, with Domain Engineering determining how to exploit the commonalities across the applications,
and Application Engineering developing each application in accordance with the common approach and
common assets identified by Domain Engineering. One of the key lessons learned by the SCA! team dur-
ing the Preparation Phase is that Domain Engineering and Application Engineering are tightly irfegrated
processes - so much so that it proves awkward to discuss them separately. For this experience report, they
are treated as a single topic.

Prior to the formation of the partnership with STARS, the SWSC had already recognized the importance of
domain-specific reuse and had been pursuing a number of informal Domain Engineering activities. One of
the key objectives of the partnership was to transform these informal activities into a systematic process.

During the Preparation Phase, the team succeeded in formulating the SCAI DE/ AE approach and defining
an overall process architecture. This experience report topic deals with the work that was done during the
Preparation Phase to:

(1) Conduct precursor engineering activities, consisting of:

* Generating a pilot application, 2nd
¢ Generating domain/application models; and
(2) Define the Domain/ Application Engineering process.

The report also provides an outline of the resulting approach itself which embodies much of the teams
overall experience.

The general-purpose techniques being used on the SCAI project to define the DE/ AE process are dis-
cussed in a separate experience report section, entitled Process Support.

Long-Range Objectives

The following is a recap of the long-range project goals that are relevant to Domain/ Application Engineer-
ing.

(1) Product Goals

* Develop a space mission capability suitable for operational deployment by October,
1995.

® Develop reusable domain assets.
(2) Approach Goals
* Apply the RICC technology to SCAI development and demonstrate its benefit.

¢ Institute cooperating Domain Engincering and Application Engineering (DE/ AE)
processes including those for ongoing process improvements.

(3) Institutionalization Goals

¢ Support the establishment of a product-line organization and infrastructure,
responsible for managing the evolution of multiple application systems.

Domain Engincenng/Application Engincering 16 July 25, 1994

Relationship to Other Project Areas

Figure 5 depicts the relationship of the activities discussed in this section to other project areas.

Customers
o Application Requirements
- New/Modified Missions o Approach
- Problems Qbjectives
’ Process
Management Support
g
etho
o Approach] l;_r less DE/AE
Candidates po
S ouirements APPROACH
DEFINITION
Technologies
SEE Support
o Recommended
Improvements
0 Meftrics
Methoge
o Produgt Objectives Metrics
- Applitagon
- Product-line
o Tools
ENGINEERING
Prototypes
oN\Application Increments

Applications

Product-line Assets

Figure 5. Relationship of DE/AE Activities to Other Project Areas

The highlighted boxes in the figure are covered in this section.

2.2 Preparation Phase Analysis

This subsection discusses the DE/ AE experience gained during the Preparation Phase of the SCAI Demon-
stration Project.

2.2.1 Plans
Preparation Phase Objectives

Based on the long-term DE/ AE goals discussed in Section 2.1 above, the Preparation Phase objectives
identified for this area were:

(1) Near-Term Product Objectives

¢ Verify the RICC-based architectural infrastructure in the Space domain.

Domain Engineering/Application Engineering 17 July 25, 1994

* Construct preliminary domain/application models.
(2) Near-Term Approach Objectives

e Formulate a DE/AE approach, including a preliminary process architecture.
(3) Near-Term Institutionalization Objectives

¢ Improve domain expertise.

* Learn the technologies and tools to be used in the DE/ AE approach.

Assumptions

The following were some of the key assumptions made by the team at the outset:
(1) Useand improve the existing Architectural Infrastructure approach.

The 1990 Air Force Space Command (AFSPC) drive to develop a strategy to move to an
architecture based on Open Systems Environments resulted in the development of a set of
archltectural components, called the Command and Control Architecture Infrastructure
(C2AD. Leveraging work accomplished by TRW on a production contract called CCPDS-R
(Command Center Processing and Display System Replacement), the SWSC contracted
TRW to advance CCPDS-R techniques and demonstrate a subset of the Cheyenne Mountain
Missile Warning requirements, on a pilot program called the Reusable Integrated Command
Center (RICC).

Significant commonality exists between c? systems, and the RICC architecture infrastruc-
ture developed reusable software to address these common requirements. The informal
analysis of the C“domain resulted in a two layer architecture, with a service layer supported
by a set of Ada Program Generators.

The foundation for Domain Specific Reuse for the STARS/SCAI project, consequently, is the
Reusable Integrated Command Center (RICC) architectural infrastructure and program gen-
erator technology. See Appendix B for more information on the RICC approach.

A major assumption for the Demonstration Project was to take advantage of the RICC
approach - including gathering additional data about its viability in this domain, and
improving the capabilities and maintainability of the associated tool set.

(2) Use the modeling work already in progress at the starting point for the domain/application
analysis.

Several key modeling activities were already underway prior to the start of the Demonstra-
tion Project. The Corporate Information Management (CIM) model deals with the general
operational requirements for various Cheyenne Mountain command centers, while the Mis-
sion Operational/Information Analysis model (MOIA) focuses on the command center
operations of the space support systems in particular.

These modeling activities were judged to be essential ingredients in any realization of the
SWSC Domain Engineering approach, and the SWSC decided that they would be continued
and that the work products would be incorporated as part of the domain modeling strategy.

Refer to Appendix B for a more detailed description of these modeling approaches.
(3) Use the Ada language for all software development.

(4) Continue reliance on the Rational Ada Support Environment.

Domain Engincenng/Applicanon Engineering 18 July 25. 1994

Given the commitment to Ada, the SWSC had already established a close relationship with
Rational and had decided to adopt the Rational Ada rrogramming support environment
and associated tools for the SCAI project. At first ziance, this appears to be an assumption
that is relevant only to the SEE, but it also proved to be influential to certain methodological
decisions made during the Preparatiot: Phase - such as the specific object oriented method to
be used to develop the space domain model (the Rational Booch method, supported by the
Rational/ROSE tool).

(5) Capitalize on certain STARS-sponsored concepts and technologies:
¢ Domain Analysis Process Model (DAPM),
¢ Conceptual Framework for Reuse Processes (CFRP),

* The Two Life-Cycle paradigm for coordinated Domain and Application Engineering
processes, and

¢ The Cleanroom Software Engineering Process.

These concepts and technologies are discussed in the following subsections. Also refer to
Appendix B for more details.

(6) Iterative nature of Software Engineering Process

The resulting approach also needed to allow for iterative development of systems, with
ample opportunities for early buy-in to the design by the customer. The approach must also
support product-line development, and be evolutionary in nature.

Planned Activities

Given these assumptions, the activities to be used to accomplish the Preparation Phase objectives were:
(1) Develop the SCAI pilot,

(2) Build initial models in the C2and Space C2 domain:

®* Space c? operations as currently practiced in Cheyenne Mountain,

¢ Capability model of the current SPADOC application software, and

* Information model of the current SPADOC application software; and
(3) Develop and document the DE/AE approach.

Table 6 depicts how these activities were intended to address the Preparation Phase objectives.

As shown in Figure 5, above, the DE/ AE work can be thought of as two interacting activity groups: activi-
ties designed to formulate the approach (DE/AE Approach Definition), and activities designed to develop
engineering products (DE/ AE Engineering). Recognizing the need for usable products at the conclusion of
this phase, a conscious decision was made to perform both activity groups in parallel. The early engineer-
ing work was intended both to provide experience needed to develop the approach and to produce work
products that could launch the production phase work.

It should be noted that in view of the large amount of learning that faced the team, it was not possible to
lay out a very detailed schedule. The plan boiled down to fairly loose statements of objectives in each area,
with a deadline of 10/1/93 (the nominal start of the Performance Phase).

Some of the most profound objectives were institutionalization objectives: improve domain expertise, and
learn the technologies and tools. Each of the planned activities would contribute to these organizational
learning objectives.

Domain Enginceni.g/Application Engineering 19 July 25, 1994

Plannea

Activities
14
E
£ <
Preparation Phase Objectives _2lm g
52558
E|Ex|D <

NEAR-TERM PRODUCT OBJECTIVES

Verify the RICC-based architectural infrastructure in the X
Space domain

Construct preliminary domain/application models X
NEAR-TERM APPROACH OBJECTIVES

Formulate a DE/AE approach, including a preliminary X
process architecture

NEAR-TERM INSTITUTIONALIZATION OBJECTIVES
Improve domain expertise X | X

Learn the technologies and tools to be used in the DE/AE
X | X |X
approach

TABLE 6. Relationships between Preparation Phase Activities and Objectives

A key challenge facing the team was the fact that the SCAI project brought together multiple organiza-
tions, each with successes in using technologies with which they were familiar. This required that the
project members had to understand the variety of SWSC incumbent technologies, the organizations in
which those technologies were used, and the STARS technologies, before they could begin the process of
integrating the technologies into the SCAI technical approach.

In view of the anticipated difficulty in achieving consensus on the DE/AE approach, the Air Force project
management was faced with a dilemma. Working out the approach seemed to require the most talented,
most experienced people. Yet if these people were devoted exclusively to the approach definition work, the
product objectives could be in jeopardy. On the other hand, in the absence of a well-defined approach,
there was a strong risk that the products developed during the Preparation Phase would not provide a
sound basis for the Performance Phase work.

The management approach adopted by the Air Force was to keep its product-oriented activities relatively
isolated from each other - and from the approach definition activities as well. Each product-oriented activ-
ity would be kept apprised of the maturing approach strategy but would be allowed to evolve its own
detailed methodology. Similarly, the approach definition activity would be kept apprised of the results
being achieved in the product-oriented activities and would attempt to take advantage of their experience
in evolving the overall DE/ AE approach. As confidence increased in the maturing DE/ AE approach, more
interaction between the various groups would be encouraged.

2.2.2 Summary of Accomplishments

The SCAI team successfully accomplished all of the major Preparation 'hase DE/ AE objectives cited in the
prior section. The following paragraphs summarize the accomplishments.

Domain Engincenng/Applicanon Engineering 20 July 25, 1994

(1) Developed the SCAI pilot

The pilot implements several significant functions present in the existing SPADOC applica-
tion using the new open-systems based architecture infrastrusture. It has served as an excel-
lent communication vehicle to the future users of the SCAl application; it has also provided
a concrete demonstration of the viability of the architectural approach to outside observers.
Building the pilot has helped transition the RICC- based system construction methodology
to additional team members, and it has also helped improve the team’s space domain exper-
tise.

The most significant result of the pilot activity is the additional confidence the SWSC now
has that the architectural infrastructure is viable for multiple applications within the prod-
uct-line.

(2) Built initial requirements models:

¢ The CIM and MOIA models produced during the Preparation Phase capture the
space operations to a sufficient level of detail to support the Performance Phase
work. These models have served as a good basis for communication with the future
users of the SCAI application. (These models are defined in Appendix B, and they are
also discussed in more detail later in this subsection).

¢ Built a capability and information models of the current SPADOC application
software, with emphasis on identifying the essential abstractions in the Space
domain.

Two models were developed: an object oriented model and an information model.
The models will provide the foundation for the SCAI specification effort during the
Performance Phase.

The initial intent of these models was to capture the existing SPADOC software, to
serve as the basis for re-engineering much of the SPADOC functionality for the SCAIL
As this modeling activity progressed, however, another key objective emerged: the
need to recast the current functionality in a form that would serve the interests of
other applications in the domain. This led to the emphasis on identifying essential
abstractions in the models, including the decision to map the SPADOC functionality
to a new object oriented view.

(3) Developed and documented the DE/AE approach

The team achieved consensus on the overall approach, which was documented in Version
2.0 of the SCAI Demonstration Project Management Plan (SDPMP), dated 10/15/93. The
approach is reflected in the SCAI process architecture, documented in IDEF(form, and
attached as an appendix to the SDPMP.

The remainder of this subsection presents the experience gained while accomplishing the above.

2.2.3 Analysis

This material is based on more detailed experience information to be found in Appendix E, attached to this
document.

SCAI Pilot Experience

The SCAI pilot was designed to test and demonstrate the feasibility of using the RICC as the architectural
infrastructure to support the space mission. Two representative space mission applications were imple-
mented.

(1) Satellite Ground Tracks

Domain Engineering/Application Engineering 21 July 25. 1994

(2) Sensor-Satellite Look Angles

The target hardware was the IBM RS6000 series workstation. The intent of the pilot was to implement the

applications with the look and feel of SPADOC 4B displays and to have the software produce the same

numerical results as SPADOC. Allowances were made to accommodate differences between RS6000 and

the SPADOC 4B Megatek with respect to keyboards and X Window capabilities, and the pilot was permit-
- ted to make minor improvements in display format and functionality.

Kaman Sciences was teamed with TRYW. Kaman was responsible for implementing the space application

software, and TRW was resporisible for implementing the user interface displays, the data base, and the

input and output message processing using the TRW developed RICC and associated tools. The applica-
tion software was coded in Ada.

To determine the functionality to be implemented in the pilot, the team iterated on a set of “threads”, or
scenarios that were defined in terms of coherent user interface activities. Several reviews were held with
current SPADOC users present in order to gain concurrence that the threads defined would be a represen-
tative set.

The goal of writing a small but representative subset of space applications software in Ada and of using
the RICC architectural infrastructure was achieved. Using satellite element set and sensor location/limit
data from SPADOC, the SCAI pilot produced ground tracks, ephemerides, and sensor-satellite look angles
for five satellites representing a cross section of the satellite catalog. The results matched SPADOC 4B
results within a reasonable degree of accuracy.

Modeling Experience
(1) Operations Modeling

Following the CIM methodology, this project was conducted in two workshops: a Baseline
workshop which established the scope and began the analysis of the AS-IS Space Control
Mission, and an Activity Based Costing (ABC) workshop. The Functional Economic Analy-
sis (FEA) workshop which would normally follow the ABC workshop was postponed until
after Missile Warning Mission and the mission of the Command Center could be completed
to allow the FEA to be conducted on the aggregate processes. The workshops developed,
refined and validated the Space Control Mission AS-IS activity model, identified improve-
ment opportunities related to the processes performed in executing the mission, developed
a Space Control Mission TO-BE activity model incorporating improvement opportunities.
This effort was accomplished by a team of users and SCAI project team members and was
viewed as top-down perspective of the operational activities.

The MOIA approach of analyzing command center operations through detailed reviews of
concept of operations, checklists, and other command center artifacts was applied to three
distinct space related operations centers in CMAFB, 1CACS, SSC and SPADOC. The effort
was recorded using the IDEF notation and was viewed as bottom-up.

The CIM model and the MOIA models were then compared to ensure that the top-down and
bottom-up approaches merged. These effort resulted in two major accomplishments:

* The development of an operational model of the space mission which could be used
for both the applications development and further understanding of the Space and
Warning domain.

* The opportunity to acquaint the user with the STARS Demo project
(2) Space Domain Requirements OO Model

The process used by Kaman Sciences to build a Space Domain Requirements Model was

developed incrementally and is a composite of the Booch, Shlaer-Mellor, Concept Maps, and
DAPM (refer to Appendix B, Technologies Contributing to SCALI). Using existing SPADOC 4
system documentation, phase one constructed an unabstracted object oriented model of the

Domain Engincenng/Applicaton Engineering 22 July 25, 1994

existing system. Phase two mapped the unabstracted model into two layers: a service layer
and an application layer. Each layer was comprised of a pseudo-Booch Logical Model. This
two-iayer model was consistent with the RICC architecture. It also met the DAPM starting
point requirements of postulating an initial architecture for the domain of interest. The third
phase, with reuse as an objective, identified new services, when analyzing redundancies in
the unabstracted Concept Model, that could be mapped from the application layer into the
service layer. The Booch Logical Modeling, used during the second phase, was modified.
Ada PDL (program design language) was added to describe the behavior of the objects iden-
tified in the model, and to have the models be consistent with Cleanroom practices.

The need to exclusively use the DAPM formal domain analysis technique to model the space
domain was deemphasized because the project postulated that from a functional software
perspective the operational system (SPADOC 4) software was equivalent to the Space Con-
trol Domain. This assumption is reasonable because SPADOC 4 is a replacement for existing
Space Surveillance Center (SSC) systems, and is by definition a superset of the Mobile sys-
tem. As a result, the focus was to create Application Engineering artifacts that were consis-
tent with Domain Engineering principles and could be easily generalized into Domain
Engineering artifacts. The process design team was to ensure that the Application Engineer-
ing process was reusable as a Domain Engineering process with a broadened scope of the
analysis.

(3) Space Domain Requirements Information Model

The information modeling effort began with ext.acting database design information from
the SPADOC 4 system engineering documentation. That information was analyzed and
used to develop a third normal relational database schema. A data dictionary was estab-
lished and populated. The effort was developed using Enity Relationship Diagram (ERD)
notation. Due to the vast amount of data to be organized the initial conceptual data schema
has focused on defining all entities, relationships, keys and attributes for release one.

The Space Control Mission workshop also developed a data model using IDEFy, notation.
This high-level model was developed based on the information flow depicted in the activity
model and independently to the ERD.

The ERD model was compared against both the entities defined in the OO model and the
CIM IDEF1y data model to ensure consistency. Although each of the models depict varying
levels of detail and were developed from different perspectives and purposes they were
found to be reasonably congruent.

This resulted in a conceptual schema which could be developed into database tables to
allow the development of the application.

Approach Definition Experience

A great deal of experience was gain>d as a result of the activities in this key grouping. Because of the vol-
ume of experience data generated, cnly a summary is presented here. Appendix E, Preliminary DE/AE
Process, is attached to this report to provide additional information for interested readers. The appendix
covers the following topics:

(1) Selected DE/AE Approach Topics
(2) Creating a DE/AE Process
(3) Preliminary SCAI DE/AE Process

The following is a summary of the DE/ AE Approach Definition experience gained during the Preparation
Phase.

(1) Iterative Buildup of Approach

Domain Engincering/Application Engincering Rk} July 25, 1994

Forging a megaprogramming DE/AE process was perhaps the most difficult technical chal-
lenge faced by the SCAI team. This was due to the amount of learning required by each team
member, and the difficulty in integrating the best of the strong candidate technologies,
methods, and tools being considered. It proved impossible to define the process in one mas-
sive intellectual leap. The only way for the team to cope with the problem was to iterate. In
retrospect, there was no formal process followed while this work proceeded. Working
groups would alternate between periods of intensive interaction and periods of relative
inactivity - while other more pressing issues were addressed. Frequently, several approach
issues were being studied in parallel by separate groups. Discussions were sometimes con-
tentious. In general, with so mucn to integrate, a great deal of “groping” occurred.

Despite the seeming confusion, however, some very bright and experienced people man-
aged to make a great deal of headway, and at the conclusion of the Preparation Phase, the
team had achieved a high degree of consensus on the overall approach.

Although there was no formal plan or process followed while this iteration was in progress,
some patterns did emerge. In general, the implicit process was something like the following:

¢ Postulate a facet of the approach and attempt to elaborate it;
¢ Identify the most pressing issues associated with the postulated facet;
e Attempt to resolve the issues;

¢ Ifrough agreement can be achieved, attempt to articulate the agreement and
document it or present it to a wider audience to gain consensus;

e Ifasufficient level of consensus is achieved, attempt to merge the new facet into
existing materials used to capture the approach (papers, charts, etc.).

By the end of the Preparation Phase, the approach was far from complete, yet sufficient
agreement had been reached about the key aspects of the approach, that it was possible to
launch the Performance Phase work.

In summary, the team recognizes that iterating on the approach is a fact of life, and further,
that the iteration will continue throughout the life of the product-line (i.e., process improve-
ment is a continuing responsibility.).

(2) Coming to Grips with Terminology Problems

One of the key problems impeding convergence on approach was terminology. Terms such
as “architecture”, “domain”, and “model”, had different meanings to virtually every person.
A frequent scenario was a protracted, sometimes emotional interchange that culminated ina
realization that the parties had been talking about two different things (or more!). A glossary
would have been very useful, and in fact one gradually emerged. The difficulty in generat-
ing a glossary was that some terms continued to defy consensus. A practicle glossary
appears in Appendix A. The move towards a complete glossary is continuing into the Per-
formance Phase. -

(3) Shlaer-Mellor Pilot Model

Inan attempt to distinguish exactly what Domain Enginecring might be for the SCAI project
and to determine exactly what a Domain Requirements Model and a Domain Architecture
Model would look like a four week effort was spent building an experimental Domain
Requirements Model using Domain Analysis Process Model (DAPM) and the modeling
views advocated by Shlaer-Mellor Object Oriented Analysis. The subdomain of Space Oper-
ations was sclected for the modeling pilot, since the first release of SCALl software was
intended for that domain.

Domain Engincening/Apphication Engineering 4 July 25, 1994

The Shlaer-Mellor methodology advocated a layered model framework, which was also
being advocated by the space anzlysis work being done. This notion of layering ended up
being an essential aspect of the current approach (refer to Appendix E).

(4) Resolving Dissonant Aspects of Approach

With the number of technologies, methods and tools being considered, it was inevitable that
aspects that were considered “mandatory” appeared to be unalterably dissonant.

As an example, the team had an objective of taking advantage of three key technologies:
Ada Process Model, OO Analysis and Design, and Cieanroom Software Engineering (refer
to Appendix B Technologies Contributing to SCAI, for an explanation of these terms). Each
had undeniable advantages. Ada Process Model stressed building the system incrementally,
with each increment disclosing more of the design, and each increment giving more insight
into the true requirements. This seemed to be at odds with the Cleanroom principle of get-
ting the requirements correct from the start, before proceeding to implementation. Clean-
room seemed to dictate functional decomposition, in opposition to the object oriented
approach. And so on.

In fact, the team was able to forge an entirely new approach from the three - potentially
strengthening each of the ingredient approaches. Although this integrated approach is still
being elaborated, and although a lot more experience needs to be gathered, the marriage
appears off to a good start. Refer to Appendix E, Preliminary DE/ AE Process, for a high-
level summary of the current approach, showing how the three technologies are used in con-
ort.

Some of the other aspects of the approach that proved to be hurdles were:
¢ Mapping the STARS “Two Life-Cycle” process model to DE and AE

* Early thinking called for two entirely distinct processes: Domain Engineering, and
Application Engineering - each with its own set of artifacts that were somehow tied
together. At this point in time, the team believes that the processes are integrated as
one process (hence the name of the current Experience Report section), and that
many of the modeling artifacts are joined together.

* Requirements Models vs. Architecture Models

* Early thinking called for four distinct models: Domain Requirements Model (DRM),
Domain Architecture Model (DAM), Application Requirements Model (ARM), and
Application Architecture Model (A AM). The above paragraph indicates that the
distinction between the Domain and Application models is blurred, and it now also
appears that the distinction between the requirements and architecture models is also
blurred.

(5) Capturing the Approach

Once a decision had been made about the approach, the question of how to record it |
emerged. In fact, much of the approach emerged on slips of paper, on whiteboards, on pre- !
sentation charts, and (sometimes) in more formal white papers. All too often it occurred that

two parties left a working session with a secure feeling that agreement had been reached,

only to discover later that there were still differences. Writing the agreement down helped

prevent this, but even that wasn’t an ironclad solution.

Two main project-wide artifacts have been used effectively to help cement the team’s
approach. The first was the SCAI Demonsiration Project Management Plan (SDPMPD). Ver-
sior: 2.0 of this document, dated 10/15/94, brought together the overall approach in a fairly
coherent fashion. The second was the SCAI Process Architecture, an IDEFymodel of the top

Domain Engineering/Application Enginecring 25 July 25, 1994

three-or-four levels of the SCAI process. This described the activities in the process as wellas
the primary interfaces among them; it also included a glossary of terms used in the process
model.

As the team moves into the Performance Phase, the approach is being further refined into
detailed process definitions. This refinement is being done incrementally, with each incre-
ment dictated by the timing of the Performance Phase activities and by the maturity of the
area of the process. The first process area scheduled for detailed process definition is the
specification process - a process that is heavily dependent on the modeling artifacts.

2.2.4 Lessons-Learned
The DE/ AE lessons are divided into the following subcategories:

(1) Domain Engineering/ Application Engineering Process Definition

(2) Creating a Space Domain Requirements Model

Given the current status of the project (transition between preparation and Performance Phases), these les-
sons should be viewed as partially validated. More definitive lessons will be provided in future versions of
this Experience Report.

Domain Engineering Process Definition

The following lessons were learned while trying to create a Domain Engineering process that embodied
STARS concepts as well as existing SWSC technologies.

Lesson: Interpret the STARS “Two Life-Cycle Model™ as a single integrated DE/AE process.

The SCAI team has found it necessary to re-interpret the STARS “Two Life-Cycle Model” to show very
close interaction between Domain Engineering and Application Engineering, in order to constantly vali-
date the domain models against real applications in the domain. The models must be developed iteratively
to avoid the creation of complete but unvalidated models. In fact, the team has developed a working
hypothesis that application level models to a large extent should be views of domain level models.

Lesson: Domain analysis principles should be applied even to individual applications.

Domain Analysis typically looks at multiple systems with the intent of discovering the similarities and the
differences. The overlap of DA with Systems Analysis should be in identifying system similarities, which
is synonymous with identifying high level abstractions. If the DA process is well-understood it should be
applicable to a single system. If DA is applied to a non-perfect, single system, the result should be a sim-
pler, well-structured, single system. Thus, even if an organization is initially unwilling to invest in DA and
generalized component development across the whole extent of the domain, they may be willing to apply
domain analysis to a single system, and still be able to judge the economic and technical value of the DA
process. This does not change the purpose of domain analysis from identifying commonalities across mul-
tiple systems.

Lesson: Domain analysis must include operational analysis of system usage.

Domain Analysis typically examines similar software systems by examining the requirements, design, and
software of these systems. However, to create truly abstract domain requirements (problem-state model),
the scenarios via which uscrs interact with the systems must be understoo” " he entire process that the
organization follows developing software systems may also need to be examined in order to create an
abstract Domain Requirements Model. For example, in the Space Domain, several systems involve the
Orbit Analyst in a complicated dialogue across multiple display screens in order to determine the orbit of a
satellite that requires non-routine calculations. Two reasons for creating the dialogue are: 1) The calcula-
tions are too expensive for obsolete hardware to handie on a routine basis, 2) Compute-expensive routines
would have to be written to duplicate the intellect of Orbit Analysts inspecting on-screen graphics. As
hardware becomes faster, the need to involve the Analyst in an external dialogue may disappear. However,
without examining the Orbit Analyst’s role in the overall organizational process, the reason for the specific
Human-Machine Interfaces, which are common across all the Space Systems, would not be clear.

Domain Engineening/Application Engineering 26 Jily 25. 1994

Lesson: The specific DA process may not be as important as planning and assigning domain experts and
systems engineers to search for system commonalities.

Without a formal process, a set of common services for C2Al systems was developed by TRW. These ser-
vices are embodied in the RICC products. Independently, Ruben Prieto-Diaz applied his DA process to the
same domain at Contel. Independently, IBM developed its CCS-2000 Domain- Specific architecture. In all
three cases, the same common services were discovered. The lesson that might be learned is: The specific
DA process used to uncover the common services is not as important as the fact that there is a planned and
concerted effort to discover system commonalities.

Lesson: Class models can be used as domain models.

Booch Class Models are good mechanisms for recording Domain Requirements Models. Superclasses, class
categories, and polymorphism intrinsically identify high level abstractions/system commonalities. Sub-
classes identify system differences.

Lesson: Domain analysis should produce the simplest reusable system.

Domain analysis should not just statically identify reusable artifacts, but should identify reusable artifacts
that will result in the simplest possible reusable system in the domain. One method for identifying the sim-
plest possible system is to compare the behavior encapsulated within classes to the interfaces defined
between classes, as represented by object scenario diagrams. If identifying a common reusable class results
in a scenario of usage that sends a single message into and out of a common reusable class for all systems
in the domain, and the reusable class abstracts complicated internal behavior, then the reusable class is
loosely coupled. If, however, the scenario of usage for the reusable for class across all systems in the
domain results in hundreds of messages in and out of the class then the class is tightly coupled to other
classes and is not a good choice as a pot-ntial reusable component abstraction.

Lesson: Domain Requirements Model for C2AI must be layered.

Two philosophies of domain-specific reuse existed within the SEI: the D’ Appolito school, which believed
in basing reuse on a common Domain Architectural Model, and the Cohen school which believed in basing
reuse upon both a Domain Requirements Model and a Domain Architectural Model. Through practice, we
accepted a Cohen Approach modified by Prieto-Diaz. A requirements model shows what problem systems
in the domain are supposed to solve. When technological changes mandate a different architecture, sys-
tems need not be redeveloped from scratch. Big DoD systems are going through a technology shift right
now with networked workstations replacing large mainframe computers. The next such technology transi-
tion might be the use of massively parallel computers. Though it is necessary to capture the domain prob-
lem in a mode using the Prieto-Diaz process of domain analysis, domain “artifacts” will be uncovered
which do not relate to the problem state. As an example, references to querying a relational data base are
not problem state artifacts, but are encountered frequently during analysis of C*Al systems. The Prieto-
Diaz approach is to postulate an architecture and provide a layer in which these references can be cap-
tured. The postulated architecture for the SCAI is the RICC “Chip” layered architecture. This layer need
not be elaborated as part of the formal requirements model, but it can be developed and elaborated as part
of the Domain Architectural Model. This service layer to the Domain Architectural Model will need to be
elaborated to identify whether sufficient services exist to develop the application layer in the domain
architecture.

Lesson: Domain software components should include validation data.

A Domain Architectural Model defines the context via which reusable components communicate. The
STARS SCAI team feels that reusable specifications, validation, testing, and intended usage context are
necessary for reusable software components. This contextual data is contained in Cleanroom Six-Volume
Specifications, which are generated by the Cleanroom Process. Cleanroom System (Domain) Specifications
will define a formal and implementation free, functional set of requirements. These requirements will
define the boundary of the system. They will also provide a way of validating the Domain Requirements
Model. If the same stimulus history applied to both the Domain Black Box and the Domain Requirements
Model produce the same response, then the Domain Requirements Model has been validated.

Domain Engineening/Application Engineering 27 July 25, 1994

Creating a2 Space Domain Requirements Model

In the following discussion, describing initial experiences in applying OOA modeling principles, some
non-standard terminology is used. One of the techniques used is called “Concept Maps”, which is an infor-
mal brainstorming technique in which the modeler is not restricted to fixed object relationships, eliminat-
ing redundant entities, or making clear distinctions between entities and attributes. OOD refers to a Booch
logical analysis process, with two caveats: 1) Object Scenario Diagrams do not show whether message
passing is synchronous or asynchronous, 2) Object Scenario Diagrams have Ada PDL associated with them
to show high-level behavioral abstraction.

Lesson: Domain analysis must concentrate on capturing the “apparent” aspects of the domain and charac-
terizing its essence, rather than its atomic details.

Although time constraints are always a factor in projects, the analysis of the entire space domain in the
given time-frame was somewhat overwhelming. The time-factor forced us to deal with the “essence” of
the domain and, rather than getting bogged down in the seemingly infinite details within the space mis-
sion, and we succeeded in capturing the entire domain and its essential behavior and relationships. Conse-
quently, we were able to produce a domain-wide OOD that is merely missing a consistent depth of
refinement. The level of depth within the analysis and design products is inconsistent. That is, some enti-
ties in the analysis model are detailed well and others are not. In the design model, we could not refine all
of the class operations down to the same level, nor could we deal properly with concurrence, persistence,
or synchronous/asynchronous messages.

Lesson: Behavioral Abstraction is necessary.

A method of depicting and sequencing behavior, other than through PDL is needed. Development of the
architecture is driven by sequencing implications and if an object scenario has been refined to PDL there is
inertia making design changes difficult. Performance design should take place earlier.

Lesson: Project terminology needs to be shared and defined in a Project Glossary that is well distributed
throughout the project.

Terminology was a stumbling block For example, when we initially defined the process and the products
we were going to produce, we used the terms “model” and “architecture” and carried these for a long time
in the project. However, they later proved to be confusing to other SCAI members and thus counterpro-
ductive. Although we changed the terms to OO Analysis Model and OO Design Model late in the game
(expensive in man-hours) to try to overcome the difficulties, even these terms are not without castigation,
and a consensus on terminology is still elusive.

Lesson: The flexibility to change process definition real time is important.

The definition of a process was one of the absolute necessities for this modeling effort. It defined the
ordered steps and activities with their accompanying inputs and products. We made several modifications
to the process as we were going through it and that in itself is important. Having the flexibility to change
the process for real-time improvement is important. It was essential not to treat the defined IDEF process
activities as inflexible due to the amount of interaction that existed between activities and the detailed arti-
fact definitions required. '

Lesson: Both functional and object oriented mind sets are required.

Due to the functional nature of the SPADOC requirements, and the need to depict the control state aspects
of the SCAl threads it proved necessary to use our functional mindset at times. However the learning
curve for OOA/OOD is steep and thinking in terms of objects was not easily caught by those who have
been using functional decomposition for many years. We were fortunate to have someone on our team
who had several ycars experience in OOA/OOD. This proved to be an extremely valuable asset.

Lesson: Duplication of entitics does not hinder understanding of focal entity behavior and relationships.

In developing the analysis model, we initially were confronted with the problem of duplication of entities.
That is, when we decomposed an entity down one leg, we inevitably uncovered a relationship to an entity
that showed up in another leg. The problem was this: cither we accepted duplication and documented the
same entity every time we encountered it, or we had to solve the larger problem of how to characterize
focal entity relationships without duplication. We made the decision not to worry about duplication and

Domain Engineenng/Application Engineering 28 July 25. 1994

proceeded to give each entity a unique identifier based upon its context in the mapping. This proved to be
a good decision in that it reduced a great deal of coordination overhead and preserved the integrity of each
concept map. Our objective was to capture the focal entity behavior and relationships and this allowed us
to concentrate on that objective. It turned out that the duplication did not pose a problem in transitionally
to the OOD phase.

Lesson: A single or chief architect who is responsible for assuring the integrity of the overall system archi-
tecture is essential.

When we entered the OOD phase, it became very clear that we needed to have an overall architect who
would design the initial class diagrams and review all of the class and object diagram development. With-
out this, the project would have not succeeded. It was absolutely essential to maintaining a logical and
consistent design. We also discovered that every team member had to have a total domain understanding
in the OOD phase. This was a change from the OOA phase, where each analyst could take a particular leg
of the analysis model and characterize the individual entities. However, in the OOD phase, the relation-
ships between the classes and objects were much more pervasive and required a broader understanding of
the domain.

Lesson: The design process of stepwise refinement is valuable.

Although not unique to OOA/0OOD analysis, we found that following the design process of stepwise
refinement very valuable. We developed the initial class diagrams with their operations and the initial
object diagrams and then began the refinement process. As we continued this refinement, we discovered
new operations, classes, relationships, etc., and simply updated the model accordingly. This process can
simply be continued until you arrive at the code level following very easy and small incremental steps.

Lesson: State transition analysis of operator sessions was valuable.

One of the unique things that emerged from this effort was the characterization of the sessions through
state transition diagrams. It would be hard to overstate their value to this effort. They provided a solution
to capturing what appeared to be very complex display and operation relationships. We used these session
display state transition diagrams as one of the basic foundations for the OOD phase. Sessions are now
viewed as comprising a new layer to our Domain Requirements Model called the “Event” layer. This layer
is very closely related to an operational concept for the SCAI system.

2.2.5 Recommendations

Integrated DE/AE Process: Interpret the STARS “product-line Model” to call for a single integrated DE/AE pro-
cess.

Iterative Approach: Plan on a managed approach to iterative build ups of both process and product,
including precursor piloting activities.

Layered Modeling Framework: Develop a modeling framework that separates layers of abstractions and
follow this framework through both requirements and architecture modeling.

Project Glossary: Put early priority on establishing and using a process to maintain a glossary, to combat
terminology disconnects in discussions about approach and process.

Domain Engincening/Application Engincering 29 July 25, 1994

3.0 Process Suppeort

3.1 Introduction

Prior to the STARS involvement, the SWSC had made significant strides in moving to an architecture based
on open systems environment and developing practical approaches to generating reusable architectures
and artifacts. They had made little attempt to define in detail the processes they used. As a result of using
the Software Engineering Institute (SEI) Capability Maturity Model (CMM) to assess the SWSC, the orga-
nization recognized the need to develop a detailed definition of their processes. The Deputy Assistant Sec-
retary of Defense for Information Management had also chosen to sponsor a Corporate Information
Management Workshop to define the processes performed in conducting software maintenance at the
SWSC.

The SCAI project has created a Process Support Team which is responsible for process planning, process
definition, automated process enactment, process tracking, process measurement and process improve-
ment. This team supports Project Management, Domain Engineering, Application Engineering and other
project Support Teams, but each team is responsible for and retains ownership of their process. Process def-
inition formalism is being strived for at the level where:

(1) Software process guidance is tied into tool invocation mechanisms and in logon and logoff
scripts. Consulting on the current software process status is available.

(2) Process management user dialogues regarding planned and actual activities are provided,
plus non obtrusive data collection, management reporting, and expert consultation.

(3) Proactive process management of process artifacts and activities based on knowledge of
user roles and the software process is provided.

Long Term Objectives
The SCALI project outlined its long term objectives in the area of process as follows:

“Institute cooperating Domain Engineering (DE) and Application Engineering (AE) processes including
those for ongoing improvement and instantiate a process driven Software Engineering Environment to
support the SWSC TO-BE process.”

Specific objectives include:

(1) Demonstrate process driven project planning.

(2) Improve a process as a result of being process driven:
s practitioners follow the process.
e process engineers are able to collect quantitative and qualitative metrics.
* metric data is analyzed.
e process improvement is planned and implemented.

(3) Evolve SCAI project into a process driven project development organization.

Following the SCAI project, the intent is to institutionalize this approach to doing business thought the
SWSC.

Process Support 10 July 25, 1994

3.2 Preparation Phase Analysis

3.2.1 Plans

Preparation Phase Objectives

During the Preparation Phase the SCALI project process objectives were to:

(1) Model and document the SWSC “AS-IS” process and then define the SWSC “TO-BE” pro-
cess using IDEFg models and associated artifact definitions.
(2) Prepare the process support tooling for use in project planning and automation.
(3) Establish a method for formally defining and refining SCAI processes during the develop-
ment phase of the project.
Planned Activities

The SCAI project contained several key processes which could not easily be represented as one process.
The processes were:

o)

()

3

(4)

(5

The SCAI Application Engineering Process - the collective process to be defined to support
developers to produce the SCAl-based space command and control system.

The SWSC Domain Engineering Process- The process to be defined to support the develop-
ment of:

¢ models characterizing the space domain.

¢ anarchitecture that satisfies a class of surveillance data processing applications that
support both the domain subfamilies of space, air and missile warning.

* reusable software components or applications to prepare pluggable software
components.

The SCAI Services Process - The process to be defined to provide support services, such as
configuration management and software quality assurance for other SCAI processes.

The SCAI Management Process - the process to be defined to support managers in the plan-
ning, delegation, dispatching, monitoring and controlling of processes and tasks on the
SCAI project.

The SWSC Process Improvement Process - the process to be defined to support the specifica-
tion, design, development and improvement of SCAI processes.

Each of these processes satisfies a specific need. Each of these processes have defined interfaces and both
request and receive information and services from other processes and as such can be viewed as peer pro-
cesses. See Figure 6.

Process Support

31 July 25, 1994

SCAI Project
Planning, Control
& Systems
Integration
Management

Application
Engineering
Process

esponse
Service

Request/
Response
Service

" Process Definition,
Implementation &
Improvement
Process

Request/
es DONS

Product-line
Domain

Engineering
Process

Services
Process

Figure 6. Process Architecture Concept

Each of the above processes are themselves composed of process components and can be represented as an
architecture where the interfaces of each process component is defined along with the service set that each
process component performs.

This organizational concept supported our specification of the SCAI Application Engineering process and
was used to identify the key interfaces between the SCAI Apphcatxon Engineering process and the other
SCAI processes.

Within the SCAI Application Engineering process there are a number of key processes that were identified.
To support the planning for SCAI Process Definition, the steps identified in Figure 7 were performed. A
strawman workflow of the SCAI project activities was defined from surveying the relevant existing pro-
cesses, and identifying how the SCAI project was to meet its defined goals and its unique project require-
ments. This workflow analysis was prepared using the IDEFgactivity modeling technique for representing
abstractions of key project activities, while an ETVX view of the workflow provided basic control informa-
tion for the process. SCAI contractors received briefings on both IDEFgactivity model and the ETVX work-
flow model and were involved in process reviews. The information collected from both views will be
coalesced to form a SCAI AE process architecture from which an SPMS ! based model of the SCAI process
will be developed to support strawman SCAI project planning.

1. SPMS or Software Process Management System is the name used to identify the STARS- supported tool to support process specification and
process-driven project planning and project monitoring. lts successor is the commercially-supported Process Engincering & Analysis Kemel
System.

Process Support 32 July 25, 1994

gtu;:egé ‘l}selevant P> Developa gepm, a Phased
Strawman 0cess
— Workflow > Definition o
for Project Plan ‘| Defining
Identify Process | Activities pefimng
Needs
Develop Project ate
o gty
Hg:v!et%yc-onduct Supportkey
business to meet Project Activities
project goals
; Prepare
Involve project .
g participants in —p m;?ts'rﬂ“m‘l’se" —»
process planning (Using SPMS) |Project Plan

Figure 7. SCAI Process Planning Steps

The AE SCAI process architecture was used to prepare a phased process definition plan which was
employed to determine the order in which SCAI processes would be defined using the Information Orga-
nizer Template1 techniques for defining manually enactable processes. By performing the planning activi-
ties shown in Figure 7, the SCAI project will position itself to place key SCAI activities on a process-driven
basis and provide the groundwork to actually plan portions of the SCAI project using the STARS concept
of process-driven project planning.

Approach to Process-Driven Development

The SCAI approach to process-driven development began by first performing IDEFgactivity modeling to
describe the data flow between selected SWSC processes and to decompose these processes into their func-
tional components. This resulted in a SWSC “AS-IS” process definition. Aspects of this model were
employed to prepare a proposed SCAI Process Architecture. This IDEFg depiction of the SCAI project pro-
cess model will be augmented through the use of ETVX based modeling techniques to depict a more con-
trol oriented view of the process activities.

Using both process techniques to explain process concepts to the SCAI project personnel and management,
the data collected from both views will be consolidated into the current SCAI Process Architecture which
addresses both the architectures for the application and Domain Engineering processes. The IDEFgand the
ETVX based techniques are both necessary to gain project consensus for the process. The IDEFg technique
supports the concept of abstracting process components as process service objects and portrayed artifact
flow between process service objects. The ETVX view will bring the IDEFgabstractions into focus by con-
centrating on describing activity precedence, process navigation, and exception handling. The resultant
process work will provide the process architecture to support the SCAI project. This megaprogramming
based system development process will also represent the SWSC “TO-BE” process. These processes will be
periodically refined, based both on data collected from SCAI project use, and from future SWSC project
users.

1. See Appendix B for more information on these templates.

Process Support 33 July 25, 1994

The overall SCAI process approach is shown in Figure 8.

Defi :
Custo':leer Mﬁmfgvm
Need
Proc
e Plan / e\ Eng:-:er
. Pro
Manager sieeiﬁ?a’:'ion
Project/Software Project cess Mode
Planning
Dispach -
Measure W Leader
Impreroment < Collect and
mprov ollect an ives,
Reﬁi‘}eﬁn"?n'{s | Analyze - lr}ee:fe;::‘ss t
Measurements T"
Software

New [Project/Software Monitor Engineer
Requirements Manager Q {Project Stat

Figure 8. Process Cycle: Definition, Automation, Use, Improvement

Project/Product Context: The analysis and modeling of the SWSC “AS-IS” process along with the unique
requirements for the SCAI project will form the basis (or the requirements) for the SCAI process. During
this phase, the process and project engineers will become familiar with the processes that are currently in
use, as well as the new processes needed to support the RICC technologies and megaprogramming.

Plan: Based on the project and product context established in the above phase, a process specification will
be developed using IDEFgmodels and Information Organizer Templates. These models and templates will
in turn be used to develop detailed SPMS models. Project planning will them be performed by supple-
menting the SPMS models with resource, schedule, and artifact instance information SPMS will then
export all of this information into CAT Compass, the SCAI project management tool. This represents a key
feature of the SCAI approach referred to as process-driven project planning.

Prepare: The above activities have established a well defined process and created a project plan for manag-
ing that process. The next step is to prepare for automated enactment of the process using the Project CAT-
ALYST and Process Weaver capabilities. This step is essentially the encoding and instrumentation of the
process to be executed by the Process Weaver engine during project execution.

Use: The steps of the process and individual work tasks will be managed by Process Weaver throughout
the SCAI project. In order to support a gradual transition to process driven development and to spread the
considerable cost of the process definition and enactment, a phased plan was instituted.

During the Preparation Phase the SWSC “AS-1S” process will be documented using IDEF An overall
IDEFg top level Process Architecture of the SCAI will be produced representing the framework of the
SWSC “TO-BE” process.

SCAI Release 1 will be performed using manual enactment supported by the IDEFymodels and associated
artifact definitions.

Process Support 34 July 25, 1994

SCAI Release 2 will phase-in the use of the automated process planning and support tools. Process
improvement will be performed based on the experience from Release 1. A formal process definition will
be produced including detailed IDEFgand SPMS models as well as Information Organizer Templates.
Automated metrics capture will be employed based on instrumentation embedded in the processes.

SCAI Release 3 will repeat the process as refined based on the measurements from the previous release.

Measurement: As noted above, measurements taken during the execution of each iteration through the
process will be analyzed to determine how well the process performed. Amadeus will act as the primary
measurement capture and measurement data base mechanism. SPMS and Project CATALYST will also
support measurement capture and will provide the data to Amadeus for incorporation in the measure-
ment data base.

Evolve: Based on the result of analysis from the previous step, a set of process improvement requirements
will be defined. These requirements will then act as input to the next cycle of the process planning phase.
As this cycle repeats, the SCAI process will continue to improve and by the end of the SCAI project will
represent the “TO - BE” process for future development with-in SWSC.

3.2.2 Summary of Accomplishments
The SCAI team accomplished the following during the Preparation Phase:

(1) Created the SWSC “AS-IS” process model using IDEFg,

(2) Created a SWSC “TO-BE” process architecture using IDEF,

(3) Developed the Information Organizer Templates for formally defining the SCAI process.

3.2.3 Analysis

Much time and effort was spent by project and process engineers learning about all the different methods
and approaches being proposed for incorporation into the SCAI megaprogramming software develop-
ment and maintenance process.

IDEFgwas used to define the SCAI Process Architecture. The following steps were iterated to develop this
model:

(1) Gather data by reading literature and interviewing experts.

(2) Bound the subject matter in a context diagram and define the purpose and viewpoint of the
model.

(3) Structure activities and interfaces by gradually introducing more detail and refining ele-
ments in the model as more knowledge is gained.

(4) Present the model to experts and respond to their comments. |

The information in the architecture is examined over time as the model is used to conceptualize how the
prevalent SCAI technologies fit together as a whole. Several iterations of the model were developed as the
project explored processes such MOIA, Cleanroom, OOA/D and the Ada Process Model with the accom-
panying technologies. The process architecture defines the Space and Warning System Engineering Meta-
Context and the subprocess of the Space and Warning Systems Engineering processes, as well as the SCAI
Process Engineering Context.

1. SCAI Process Architecture IDEF0 Model. Version 1.0 November 18, 1993, Prepared for: HQ AFSPACECOM Space and Waming Systems Cen-
tét Ic)nlrectorale of Plans and Programs, Prepared By: SofTech, Inc. 985 Space Center Drive, Suite 320 Colorado Spnngs, Co 80915 (Currently
"ACH).

Process Support K1) July 25, 1994

The SEI and STARS conducted a process definition class in December of 1993, focusing project attention on
the criteria which are required to define enactable processes. Using the high level SCAI Process Architec-
ture and the Information Organizer Templates project process, definers are expanding the definition of the
project processes in the following areas:

(1) System Engineering
¢ Prepare Specification
¢ Requirement Model Development
¢ Architecture Model Development
(2) Incremental Software Development
e Mission Application Development
® Database Development
¢ Display Development
* Message Development
(3) Configuration Manageément
(4) Project Metrics
(5) System Certification

Thezse processes will be generalized after the initial definitions are complete, and used to form a set of
Domain Engineering processes.

The report on SCAI experience and lessons learned for this process definition expansion, including the use
of the templates, will be provided in the 1994 update to this Experience Report. The lessons associate with
developing the Information Organizer Templates are found in the STARS/SEI Technology Transition Expe-
rience Report.

3.2.4 Lessons-Learned
Converging on Technical Approach

Lesson: How technology is transitioned between organization is as important as the technologies that are
transitioned.

Technology transition is at least N directional with N being dependent on the number of organizations that
are advocating the use of a technology. When you transfer technology into an organization both the trans-
mitter and the receiver learn from each other. We spent a lot of time learning about technologies before we
were able to integrate them into an approach. This was true for developing an approach to define our pro-
cesses as well as for developing a process for Domain/ Application Engineering.

Developing IDEF(Representation of the SCAI Process Architecture

Lesson: IDEF served as a good medium for representing SCAI Process Architecture.

The Design/IDEF tool being used for SCAI works well for SCAI purposes of depirting the Process Archi-
tecture. Its primary strength is that it does a good job of graphically depicting the context of the SCAI engi-
neering process relative to other SWSC processes that were modeled using IDEFyas part of the CIM

1. Linda Parker Gates, Richard W. Phillips, STARS/SEI Technology Transition Experience Report November 30, 1993, Software Engineering
Institute, Camegie Mellon University Pittsburgh, Pennsylvania

Process Support 36 July 25, 1994

initiative. Other modeling technologies are being used to supplement this process definition with informa-
tion to facilitate process-driven planning, process enactment and measurement of the processes and the
artifacts produced by them.

Lesson: Process technologies can be combined to meet the differing needs or objectives of an organization.
A single technology does not capture all the process information required.

The IDEF methodology was not fully utilized by all process team members. This may be due to the fact
that in the area of process definition, there were multiple technologies being proposed as appropriate for
the SCAI project. No formal training in the alternative technologies was provided to all process team mem-
bers early in the process definition life-cycle, so it took a while for the team to develop a strategy as to how
the technologies would play together to create a process driven organization. IDEF gained wider accep-
tance near the completion of the process architecture development.

Lesson: Review of the Process Architecture was painful.

IDEF methodology calls for a Kit review where the model author provides reviewers with a drafted pack-
age, on which the reviewer is to place written comments, which the author then responds to. This package
is passed back and forth until the model is complete and recommended for publication. We tried to use this
approach but given constraints on team members .ime, authors did not receive many comments. The
authors also tried using unstructured interviews and walkthroughs to review the model.

Lesson: People review process architecture when they are ready to use it.

What we noticed was that people did not really critically review the Process Architecture until they actu-
ally started to use it to perform the process, or to develop the lower levels of process definition.

Lesson: Review of high level process architecture by key people is critical to the minimization of rework.

It is extremely important to ensure that close attention is paid to ensuring that the high level process archi-
tecture is reviewed in detail by key personnel. This is vital so that process definers can more efficiently and
accurately expand the definition of project processes.

3.2.5 Recommendations

Technology: When you plan to integrate multiple process definition technologies, any time spent by the
team identifying and co-developing the process definition objectives is time well spent. Team members
should also become familiar with alil the technologies being considered or planned for use, and the func-
tions each can or will provide.

Review Process: Conduct the review of the high level process architecture in a round table discussion for-
mat. Simply passing out copies and soliciting feedback did not produce the necessary resuits. Although
sometimes time-consuming, the round table review discussions proved much more effective.

Pilot: Perform a pilot evaluation of process automation technology prior to operational use. Automated
enactment of processes to drive project planning and the dispatching and tracking of a tasks status is only
very recently being prototyped. Manual enactment of defined processes has not really been tested and it is
unclear whether this would be more effective than the automated dispatching of tasks and the automated
tracking of task progress. Earlier prototyping should have been promoted even if it might have meant a
certain amount of re-work due to evolving PSS technologies.

Process Support Ky July 25, 1994

4.0 SEE Support

4.1 Introduction

Megaprogramming, according to STARS, requires a significant level of Software Engineering Environment
(SEE) support to provide automated assistance to the product-line’s process definition and enactment.
During the Preparation Phase, the Loral/STARS team continued work on a process-support tool set that is
intended for use during the Performance Phase. In the absence of full definition of the SCAI process, it was
not possible to finalize the SEE configuration. Certain assumptions about the process were possible, how-
ever, allowing the team to install an initial increment of SEE workstations and to populate them with soft-
ware tools to support key process activities. In addition, a preliminary SEE integration strategy was
established, centered around AIX Workbench as the underlying tool-integration framework and the
STARS-sponsored process-support tool suite as the basis for process contrcl integration.

Long-term Objectives

The requirement for the SCAI SEE environment is to create a framework populated with tools, supported
by well defined processes and procedures, tailored as necessary to the needs of the particular application
domain. In addition, the environment shall provide well defined software engineering, project manage-
ment and life-cycle control procedures, processes and methods.

4.2 Preparation Phase Analysis

4.2.1 Plans
Preparation Phase Objectives

To prepare to address the long-term objectives, the major Preparation Phase objectives were to:

(1) Acquire and install the first increments of SEE hardware and software and integrate the new
assets into the existing SWSC/ SMX SEE network, and

(2) Formulate a joint SEE integration strategy with the Air Force and begin the integration work
in preparation for the Performance Phase.

The intent of the Preparation Phase was to build up sufficient SEE capability to support the project’s initial
Performance Phase activities.

Assumptions

Certain givens were assumed at the outset of the project.
(1) The products in the SEE mus::

¢ Follow open integration standards and
¢ Beavailable on several hardware platforms.

(2) The SCAI SEE needs to support all members of the SCAI development team, which was ini-
tially planned to be about 20 engineers. Adding management, support, and Loral STARS
personnel would increase the number of users to over 30.

(3) The application will include about 200 KSLOC of Ada, with major portions of the applica-
tion being reused from existing work.

(4) The SCAI SEE would support the following process areas:

SEE Support 38 July 25,1994

* Product-line management
¢ Domain Engineering

* Application Engineering
* Application target testing

(5) Some use would be made of AF residual assets, including hardware, software licenses, and
network elements!.

(6) The majority of the SCAI SEE elements would be commercially available products.

(7) Some of the SCAI SEE elements would be products under development or in beta test. This
is especially applicable to products coming from STARS technology development efforts.

(8) A major effort will be the integration of the SEE to the highest level possible, based on the
capabilities of the underlying integration mechanisms, and the intended use of the tools on
the Demonstration Project. The creation of the SCAI SEEs is limited by several specific con-
straints.

e Budget - The FY 1993 budget for the SCAI SEE was set at $500,000, with acquisition
starting in January 1993 and completed by July 1993. The objective was to spend
about half of this budget on hardware and about half on software. FY 1994 will
require a similar budget, with a plan of spending 3u% on hardware, 40% on software
and services, and 30% on training“. Subsequent year budgets will have to address
upgrades, maintenance, and potential staff growth.

* Security - A portion of the project artifacts will be DoD classified, requiring a segment
of the SEE to be classified with no outbound external communications. This security
situation has had a significant effect on the connectivity assumption.

* Work Locations - Some members of the SCAI engineering team will be located in
separate contractor facilities, and do not have access to the SCAI SEE.

* SEE Product Development - Some of the elements of the SCAI SEE are not fully
developed and are not yet commercially available.(SPMS and Project Catalyst are not
fully developed).

Planned Activities

Loral FS, as the STARS prime contractor paired with the Air Force, took on the role of coordinating the ini-
tial acquisition for the Preparation Phase. The intent was to transition this capability to the Air Force for
increments following the Preparation Phase. Responsibility for acquiring and installing some incumbent
products (including the Racional Ada support environment, UNAS/SALE, etc.), rested with the Air Force.

The Air Force retained installation and system management responsibility, in keeping with their existing
role for other SEE assets.

A joint Air Force/Loral SEE working group was established for coordinating the team’s SEE needs and
developing solutions and schedules. The overall SEE integration strategy was tied to the SCAI process;
and since the process was being developed during the Preparation Phase, coordination with the process
support group was required.

Loral FS was to continue development and begin installation and training for the STARS-sponsored pro-
cess support toolset.

1. Demonsiration Project Baseline Report |.oral STARS CDRL No. 5052, Apnil 1993,
2. SEE Integration Plan, 1.oral STARS CDRI No. 5200, June 1993.

SEE Suppont 39 July 25, 1994

4.2.2 Summary of Accomplishments
(1) Acquired and installed initial increments of SEE hardware and software;

(2) Developed initial overall SEE integration strategy, documented in Version 2.0 of the SCAI
Demonstraticn Project Management Plan (SDPMP);

(3) Enhanced RICC Architectural Infrastructure support software (refer to Appendix B for
details) and continued movement towards commercialization; and

(4) Continued development of STARS-sponsored process support toolset, including integration
work to establish a coherent process support system; conducted early pilot work with Soft-
ware Process Management System (SPMS), one of the key tools in the toolset.

4.2.3 Analysis

Early in 1993, a joint team of Loral STARS and AF engineers was established to handle the SCAI SEE. Plans
and schedules were established. This effort was described in a series of documents during 1993, which
detail the accomplishments and changes in the planl.

In creating the SCAI SEE, the joint team acted as a general contractor. They completed selection and instal-
lation in stages, as decisions were made, and products arrived. The team members were the consensus
gatherers and purchasing agents.

The AF team members were the installers and initial users. The team was supported by several product
vendors.

While they made significant progress against the plan, several activities were not completed or reached
only limited success. In general, most activities were far more time consuming and complicated than ini-
tially envisioned. There were many factors and options that needed consensus decisions. Many of the
issues were unavoidable, and there are no recommendations on how to eliminate them, except to plan
more labor. The following is a list of some of the issues that impacted the results of the establishment of the
SCAI SEE.

(1) The AF and their contractors had an installed base of software and experienced users in that
base. The selection of the SCAI SEE products required significant consensus efforts to incor-
porate this existing base.

(2) The joint Loral/ AF team worked in different locations and different time zones. Phone line
and electronic communications (E-Mail and FTP) into Peterson AFB were limited. This situa-
tion placed a stress on normal communications between team members.

(3) The SEE included products from many vendors, integrated through several open system
standard interfaces.

(4) Several of the products (process support tools) had release and development delays. The
installation and use of the products were less mature than planned.

(5) Products and prices changed during the selection and acquisition period. Budgets and plans
required several adjustments.

(6) The SEE was distributed between Loral, the AF, and AF contractors in several locations. This
issue required effort to establish network capabilities and diverted attention from integra-
tion efforts.

1. SEE Integration Plan, Loral STARS CDRI. No. 5200, June 1993.Demonstration Project Management Plan, Version 1.1, Loral STARS CDRI.
No. 5050, June 1993, SCAI SLE Description, 1.oral STARS CDRL No. A0I0, October 1993, and the AF/STARS Demonstration Project Man-
agement Plan, Loral STARS CDRI. No. A0, October 1993.

SEE Support 40 July 25. 1994

(7) A major portion of the SEE is classified, and without connections off the AF base. This was
not in the original scope of the STARS Demonstration Project plan. This issue limited sup-
port from people outside the classified SEE.

(8) Less than half the planned funding was available in 1993. This delay in funding left the
acquisition of classes of products to 1994, and reduced the scope and function of the SCAI
SEE in 1993. :

SEE Strategy Development Experience

The effective use of megaprogramming concepts requires advanced technology support. Methods and
tools are required to achieve compatibility of data, control, and processes, directed at developing shared
assumptions about the system being developed.

The long term requirements for the Demonstration Project SEE are stated in the “STARS Follow-on Con-
tract”. < The following paragraphs provide the relevant extracts of that contract:

“In general terms, the environment shall consist of a framework populated with tools, supported
by well defined processes and procedures tailored, as necessary, to the needs of the particular
application domain. In addition, the environment shall provide well defined software engineering,
project management and life-cycle control procedures, processes and methods.

The contractor (Loral) shall develop and deliver to the Demonstration Project team, a product-
quality, multiple seat software engineering environment tailored to a the specific application
domain in accordance with the requirements of the Demonstration Project. The environment will
serve as the vehicle for the developing and demonstrating this technology and for supporting new
software engineering procedures, processes, and methods.

The contractor (Loral) shall, using the results of previous STARS activities, install and demonstrate
the software engineering environment tailored to the specific domain of the Demonstration
Project.” ’

The SCAI SEE strategy to meet the SEE requirements is based on the following set of variables.
(1) connectivity,
(2) number of users,
(3) user roles, responsibilities, and tasks,
(4) SCAI team process definitions,
(5) artifact sharing,
(6) user experience,
(7) cost/benefit of integration effort, and
(8) technology transition value to SWSC support team.

Integration of the SCAI SEE is grouped into four areas, the Presentation Integration, Process/Control Inte-
gration, Tools, and Data Integration. Cap Gemini’s Process Weaver, IBM’'s WorkBench, and standard rela-
tional databases are the primary mechanisms of integration in the SCAI SEE. The following Figure 9
illustrates the integration areas and components.

1. Bochm, B. W., Megaprogramming, Preliminary Version, April 1991.
2. STARS Follow-on Contract, :'19628-93-C-0129, ESC USAF, Mascon, August 1993,

SEE Support 41 ' July 25, 1994

Presentation Integration

Process WorkBench X-Windows Tool
Weaver Tool Tools Specific
Agends Manager Menu Windows

Rational Apex

CAT Compass

Relational : Tool Speclﬂc
Database 3 3 3 Fine-grain
(Sybase/Oradle) | : Data

Figure 9. Integration Areas

The main features of the Presentation Integration area are the project process guidance provided by the
Process Weaver Agenda and Work Context windows. The WorkBench Tool Manager provides an interface
to tools outside of project processes, such as mail. Tools are invoked through Process Weaver and Work-
Bench, and display their operation specific windows. The X Windows tools menu is used to start Process
Weaver and WorkBench.

The Control/Process Integration area includes the Process Weaver and WorkBench integration mecha-
nisms. Process Weaver procedures for the defined project processes provide the majority of process guid-
ance in the SCAI SEE. The STARS developed Software Process Management System (SPMS) and
ProjectCatalyst help model, plan, and define the project processes to generate the Process Weaver proce-
dures.

The Tools area includes tools selected by the SCAI team, based on their currently installed products and
the skills of the engineers.

The Data Integration area is supported by commercial relational databases, the operating system file sys-
tem, and tool specific fine-grained data storage.

SEE Process Experience

To meet these goals, within the constraints and assumptions, an iterative and incremental approach was
followed. The following is a list of the major elements of the process and the activities within each element.
The observations, analysis, and recommendations in this report are against this approach.

(1) Select SEE Products: research products, gather requirements, define criteria for selection and
publicize results of selection

SEE Support 42 July 25, 1994

(2) Acquire SEE Products: develoy preliminary plan for acquisition and use, justify cost to man-
agement, initiate acquisitior, provide technical support for acquisition and verify receipt of
products

(3) Assemble SEE Products: install products, run sanity tests on products and adjust products
for local installation syecifics

(4) Integrate SEE Products into a SCAI SEE: develop experience in using product, integrate
products using process, presentation, control, and data integration techniques, publish
administrator guides and publish user guides

(5) Deploy the SCAI SEE: demonstrate the SEE to users and release the SEE for general use

(6) Revise and Maintain the SCAI SEE: collect problem reports, respond to reports, collect
change requests, operate change board and survey users

4.2.4 Lessons-Learned

The following are some of the initial lessons relating to the SCAI SEE efforts. There are other lessons that
are emerging from observations, but they have not been fully analyzed and are not ready for reporting.
They will be documented in future versions of this experience report.

Lesson: The agreements and licenses for acquisition and maintenance are widely different for each
product.

This situation creates variation in levels of support and installation flexibility. For some products, there is
sufficient immediate support, while for others there is virtually no support. Some products are bound to
specific system configurations, and it is time consuming and sometimes costly to go to the vendor for
adjustments.

Lesson: It was difficult to plan when a product would arrive or how it would integrate into the SEE.

The variability of products being delivered to the SCAI SEE assembly site requires frequent changes to
schedules and plans. When trying to integrate several products, the delay in one product will delay in the
whole integration. Equally serious is the lack or limitation of intended function due to product
development problems. Usually adjustments can be made for these problems because of the variety of
capabilities in the other products and the use of manual processes, but disruptions in the plans will occur.
Lesson: Upgrades in the operating system (AIX) has a significant impact in our integration efforts.

There is often significant delays in upgrades of tools in the newer operating systems.

Observation: Integration complexity increases as the number of tools/vendors increases.

There are clearly advantages and disadvantages to having a SEE which requires integration of products

from multiple vendors. The SEE Team is in the process of distinguishing these factors and is trying to
determine how the factors impact integration complexity.

4.2.5 Recommendations

Based on the AF/STARS Demonstration Project SEE experiences, the following general planning
guidelines should be followed.

Incremental Integration: Plan an incremental approach to integration with few critical dependencies.

SEE Support a3 July 25. 1994

Expertise/Training: Plan for concentrated training of the integrators or hire product experts to overcome
the experience deficit. Do not select the products that the SEE integrators know, and lose the advantage of
existing project personnel experience.

Staffing Requirements: When selecting, acquiring, and assembling a SEE for a small software engineering
team (about 20 engineers), plan about 16 labor months for the effort, with a minimum elapsed time of
about six months. This does not include the integration, deployment, or support efforts. If delays occur in
this effort, as experienced on the AF/STARS Demonstration Project, additional labor months will be
required. The AF/STARS Demonstration Project, spent an estimated 14 labor months on these activities
during 1993. During 1994, to complete these activities, the AF/STARS Demonstration Project will spend
another 8 labor months.

Prerequisites to Acquisition: The selection or acquisition approach should not be started until you have a
general definition of the scope of the engineering effort and the processes that the engineers will follow.
The recommendation is to not assign anyone on a proposal team to SEE product definition, until the soft-
ware engineering process has a high level definition and until the SEE product evaluation process is
defined and documented. It is estimated that because of the lead time and cost needed to acquire SEE
products, most projects define a tool set early in the proposal, and get the SEE products locked into the
contract cost. The definition of processes is viewed as something that can be done after the contract award.
Unfortunately, this leads to parts of the process with no automation support, or products being acquired
without a process to use them (shelfware).

Operating System Releases: Plan integration of SEE Products around the operating system upgrades.
Operating System upgrades severely impact the integration efforts.

SEE Support 44 July 25, 1994

5.0 Metrics

5.1 Introduction

Metrics are instrumental in providing information to quantify software life cycle cost, quality, and
capability differences resulting from the presence and absence of megaprogramming technologies. The
SCAI project will quantitatively and qualitatively measure the effects of megaprogramming on the
development effort and the resulting product. During the Preparation Phase, the SCAI team formulated a
preliminary metrics process. The foundation for the metrics process is the formally defined set of project
goals. The team defined the project goals (refer to Section 1.2, Vision, Mission and Goals) and began
detailing the metrics collection and analysis approach.

Long term Objectives

The goal of the SCAI Project metrics activity is to establish a measurement process along with the
necessary organizational and technological support to:

(1) Enable the evaluation of progress toward achieving the goals of the SCAI project,

(2) Support continuous improvement of the processes being applied, and

(3) Provide a historical artifact to be used by future projects in determining the potential bene-
fits of applying the SCAI megaprogramming approach.

5.2 Preparation Phase Analysis

5.2.1 Plans
Preparation Phase Objectives
During the Preparation Phase the STARS project metric objectives were to:

(1) Define metrics process (approach).
(2) Gain buy-in on SCAI goals from project personnel.
(3) Prepare for long term objective one above:

* Document initial set of measurements.

¢ Begin capturing some data.

Assumptions

The following assumptions were made at the start of the metrics effort:
(1) Initial guidelines and methods would come from:
* DoD Core Measurements.
* IDA 12/92 prototype Measurement Plan.
¢ Goal/Question/Metric (GQM) Method.

(2) Some staffing would be available during the Preparation Phase (1 Full Time Equivalent per-
son of effort from a 3 person team).

Metrics 45 July 25, 1994

Planned Activities

The Metrics Team decided early in the Preparation Phase to combine the metrics work with the project’s
overall goal-setting work, with the rationale that the primary basis of any measurement activity is to help
determine how well the goals are being achieved. During the Preparation Phase, the team evolved the fol-
lowing process description to depict the integrated goals and metrics activities.

Capture
Experience and |ell—
+ Lessons Learned
Define
easurement Evolve tafl—
i Ientify Data, Implement Measurement
Process/Plan easurement Process
. __’ Sources, .’
Agents, Collection
Frequency...| . Mechanisms *
Define g‘ﬁ“‘] Perform Begin
Project | uccess Define | Cost Data Analyze
Goj:ls Indicators Metrics Trade-Off Capture easurement
for M-Goals Results
[)
PnDCﬁ"f Implement
sentation ’Presenmion
.Wechanisms Mechanisms
SCAI
Process [
provement
Other Metrics
Process Improvement [«
- Area Goals
Identify Gain Gain Capture Customer
Measuremem__—.. Goals UM Metrics — Feedback
Customers” Buy-In Buy-In Related to
Measurement

Figure 10. Metrics Process

The measurement process as shown in Figure 10 includes:
(1) Selection of SCAI Project top level goals.
(2) Identifying a set of success indicators associated with each goal.
(3) Defining a sct of metrics which could verify t‘he successful achievement of the goal.
(4) Establishing an approach for capture and collection of the metrics.
(5) Defining an approach to presenting and analyzing the measurement results.

(6) Instituting a continuous improvement cycle for the measurement process itself.

Metrics 46 July 25, 1994

The approach to metrics definition is both top down and bottom up. From a top down perspective the
project goals will be defined and refined. The purpose of the metrics activity is to determine if the goals are
being reached. The goals provide the rationale for the actual measurements collected. You could also think
of the goals as providing requirements on the metrics activity.

From a bottom up perspective, however, there is a need to determine what specific data can be gathered
and how/where it will be captured. The guidance and templates provided by the DoD Core
Measurements are used to help define these specific details.

A cost benefit trade-off will be performed to determine what measurements are practical. It is at this point
that the top down and bottom up approach meet. The result will be an affordable metrics approach that
provides a tool for project management, process improvement and future decision making regarding the
application of megaprogramming.

Also shown in Figure 10 is the need to identify and gain buy-in from the “customers” the metrics processes
are being performed for. These customers include project management from the SWSC, STARS and ESC as
well as all the SCALI project participants.

A key element of all aspects of this metrics process is the consensus building approach associated with
each of the activities. The process of defining goals and success measurement can be very effective in team
building and flushing out the overall project process. To this end, each aspect of this approach will be
developed with the involvement of all project personnel. Each iteration of the process will be developed
using interactive group techniques to assure group acceptance.

5.2.2 Summary of Accomplishments
(1) The SCAI Metrics Plan was published in October.

(2) Process (approach) was outlined and initiated.
(3) Version 2 of the Goals were documented and reviewed by project.

(4) Version 1 of the success indicators for 2 of the 3 top level goals was documented and
reviewed by project. Goal 3 (Technology Transition) deferred until mid ways through the
project.

(5) The initial draft of desired measurements produced covering about 50% of the needed mea-
surements. Many specific details need to be defined prior to capture of these measurements.
Much of this detail will eventually be part of the SCAI processes.

5.2.3 Analysis
For each of the five points noted here, the specific lessons learned are described in Section 5.2.4.
We went in search of the SCAI processes and couldn't find them documented, so we defined and docu-

mented what we know we want to measure, and we still need to define how we will gather measurements.

(1) We were able to refine Goals/Subgoals and Success Indicators by meeting in small focus
groups of 2-5 interested people for 3 hour meetings.

(2) We have taken the Goals/Question/Metrics (GQM) approach and adjusted it to construe the
questions as success indicators.

(3) We established collection categories, which appears to make the metric derivation and
implementation approach more manageable.

Metrics 47 July 25. 1994

(4) We were able to start this process with a small team of people and a reasonable amount of
effort (1 FTE), to get an initial understanding of measurements needed on the project.

5.2.4 Lessons-Learned
Lesson: The level of process definition and the precision of metrics are interdependent.

We would have wanted to say “Make sure processes to be measured are well specified,” prior to defining
metrics to be captured. However, what we really think is possible is that an organization can:

(1) Let the metrics support the process definition activities. The need to collect key pieces of
information often highlights critical points in the process which need attention.

(2) Have more human interaction when collecting measurement definition data. Even if the
process is not completely defined, humans can often provide the desired measurement data
which at some later date might be captured automatically based on a specific process defini-
tion.

(3) At some point stop metric definition activities and put more effort towards process defini-
tion. There is a trade-off to be made here. If your metrics definition gets too far ahead of the
process definition, the result may become redundant, an inefficient use of resources. It might
be better to move resources to the process definition activity and then pick up the metrics
implementation when the process has stabilized.

Lesson: Goals/Success Indicators are critical and need to have consensus.

It is never too early to define goals. Everyone on a project assumes they understand the goals. Unfortu-
nately, put these people in a room and start discussing the goals and you find that there is a great deal of
confusion and disagreement.

The process of defining goals leads to team and consensus building. Much of the initial metrics work
related to defining goals and success indicators should be carried out regardless of any needs related to
metrics collection. We used a technique of inviting small groups of project personnel to multiple half-day
(about 3 to 3.5 hours) meetings on a subset of the project goals. The subset of goals and the individuals
invited to the meetings were matched up so that the specific goal was critical to the activities of the group.

The approach worked well. There was sufficient time for detailed, and often frank, discussions to take
place. We held two rounds of meetings (5 different groups in each round). The first round concentrated on
goals and the second round refined the goals into success indicators. We captured issues from the first
round in order to avoid getting too detailed and too hung up on definition. We found that by the second
round most of the issues had resolved themselves. What was happer.ing was that the goals meeting were a
catalyst to forcing discussions on important topics.

The risk we accepted with this approach was that not all project personnel were able to participate in the
detailed discussions on all the goals. It is critical to do a careful job of matching people to goals for this
approach to succeed.

Lesson: Success indicators/questions are effective for refining goals and goal definition.

The questions (from the GQM method) were worded such that a positive answer would provide an indica-
tion that we may be successfully achieving the goal. This gave the questions a very specific focus and
helped to better clarify the goal.

Lesson: The approach tends to explode, so the team needs to work constantly to aggregate.

We first defined 3 top level goals, then sub goals and sub-sub-goals. The success indicators continued this
expansion. It became clear that we needed to constantly try to aggregate the information and not let this
expansion become unmanageable. We knew that the measurement definition would eventually pull things
back together. But the concern was that the process of expansion would get out of hand and you would
never be able to trace all the goals and success indicators back to the specific measurements.

Lesson: Collection categories made the process more manageable.

Merrics 48 July 25, 1994

We noted during the process that there would be four basic approaches to capturing the measurement
data:

(1) Automatically via the SEE.

(2) Extracted from financial systems (staff hours/cost).
(3) Manual inspection of work products.
(4) Surveys of Project personnel and potential SCAI users.
This made the organizing of the measurements much easier and allowed us to divide up the work of

implementing the collection mechanisms.

Lesson: A significant amount of effort is required for metrics definition and collection, and dependence on
the project infrastructure and process definition is clearly evident.

We were able to do the following activities with a group of three people spending approximately 1/3 of
their time each on:

(1) Defining a metrics plan/process,

(2) Coordinating the refinement and consensus building for the goals and success indicators,
and

(3) Developing a first draft list of the needed measurements and mapping them to the success
indicators.

The effort was spread over a 5 month period, May through September (total of 5 person months). How-
ever, at this point the workload increases significantly. The activities to perform next are: defining specific
measurements, data values, frequencies for collection, mechanisms for collection, database capture defini-
tions, and presentation formats. The level of effort for this activity is estimated at 2.5 persons.

5.2.5 Recommendations
Value of Metrics: Emphasize that the value of metrics to the team or team members is the ability to distin-
guish:

(1) what they intend to accomplish and

(2) what they are actually accomplishing.

With visibility into what has been accomplished, given what one intends to accomplish, team members
have the ability to take actions that can actually address getting back on course when deviations occur.
However, in order to be able to accurately report what has been accomplished, the atmosphere within the
organization needs to be such that individuals and teams do not fear retribution for being off course.

Team Exploration: During the Preparation Phase of your project, you explore with your team:
(1) How they relate to or feel about measurements?

(2) If they were sure that the results of measurement would not be used as a basis of retribution,
what possible value might visible metrics contribute to their job performance?

(3) What if anything is missing in the organization for people to feel confident that measure-
ment results will not be used against them?

Early Project Focus: Help the project focus on what they intend to accomplish as early as possible, and
have them identify how they would know if they have accomplished their intent. This focus is important

Metrics 49 July 25, 1994

not only for all project goals, but also for any goals associated with project phases. Once you have identi-
fied where people or the team wants to go, give them continuous visibility, through displays, into where
they are.

Metrics 50 July 25, 1994

6.0 Conclusion

This report has provided an overview of the SCAI project approach and the experience gained during the
Preparation Phase (October 1992 through October 1993). The report will be updated at the end of 1994,
mid-way through the Performance Phase, and again in early 1996, at the completion of the project. Interim
updates on the status of all the STARS Demonstration Projects will be provided in the STARS newsletter.

We hope this information is of value to your organization, and we welcome any comments.

Conclusion 51 July 25, 1994

Conclusion 52 July 25, 1994

Appendix A

Acronyms and Definitions

Acronyms

AAM Application Architecture Model

ABC Activity Based Costing

AE Application Engineering

AF Air Force

AFSPC Air Force Space Command

AFB Air Force Base

AIX Advanced Interactive eXecutive (IBM operating system)

AJPO Ada Joint Program Office

AMS Assets Management Sysiem

API Application Programming Interface

APSE Ada Programming Support Environment

ARM Application Requirements Model

ARPA Advanced Research Projects Agency

BRIP Business Process Improvement Program

c? Command and Control

C*Al Command and Control Architecture Infrastructure

c’ Command, Control and Communications

c Command, Control. Communications and Intelligence

CCPDS-R Command Center Processing and Display System Replacement

CDR Critical Design Review

CDRL Contract Data Requirements List

CFRP Conceptual Framework for Reuse Processes
Corporate Information Management

CIM Center for Information Management

CINC Commander in Chief

CM Configuration Management

CMAFB Cheyenne Mountain Air Force Base

CMAH CINC Mobile Alternative Headquarters

CMC Cheyenne Mountain Complex

CMM Capability Maturity Model

CMVC Configuration Management Version Control

COSE Common Open System Environment

COTS Commercial -Off-The-Shelf

CSC Computer Systems Components

Acronyms and Definmitions

A-1

July 25, 1994

CSCl Computer Software Configuration Item
DA Domain Analysis

DAM Domain Architecture Model

DAPM Domain Analysis Process Model

DASD Deputy Assistant Secretary of Defense
DBMS Data Base Management System

DE Domain Engineering

DID Data Item Description

DISA Defense Information System Agency

DE - .. Domain Engineering

DJAG Demonstration Joint Activity Group -
DoD Depariment of Defense

DRM .. Domain Requirements Model. . -
ESC Electronic Systems Center_. . :
ESIP Embedded Computer Resource Support Improvement Program .]
ETVX Entry, Task, Validation, Exit

FEA Functional Economic Analysis

FFRDC Federally Funded Research and Development Center
FP1 Functional Process Improvement

FSC Federal Systems Company

FTE Full Time Equivalent

GAC Generic Application Controller

GQOM Goal/Question/Metric

IBM International Business Machine

ICAM Integrate Computer Aided Manufaicturing
IDA Institute for Defense Analyses

IDEF ICAM Design Engineering Facility

IDEF O IDEF -Activity Modeling Technique

IDEF Ix IDEF - Rule Modeling - Data Model

IEEE Institute of Electrical and Electronic Engineers
IM Information Management

IR Incident Report

IV&V Independent Validation and Verification
LOC Lines of Code

MCCC Mobile Consolidated Command Center
MCCR Mission Critical Computer Resources
MCCS Mobile Command and Control System
MOA Memorandum Of Agreement

MOD Moadification

MOIA Mission Operation/Information Analysis
MSS Mission Support Segment

Acronyms and Defimtions

A-2

July 25, 1994

NFS Network File System

NIST National Institute of Standards and Technology
NORAD North American Aerospace Defense Command
00 Object Oriented

0ooA Object Oriented Analysis

10.0))] Object Oriented Design

oIT On-the-Job Training

PDL Program Design Language

POSIX Portable Operating System Interface

PSE Process Support Environment

PSS Process Support System

QA Quality Assurance

RD Recursive Design

RICC Reusable Integrated Command Center
SAF/AQK Security of the Air Force/Acquisition

SALE Software Architect’s Life-Cycle Environment
SAS Software Architecture Skeleton

SC Directorate of Communications and Computer Systems
SCAI Space Command and Control Architectural Infrastructure
SCF Software Change Form

SDE Software Development Environment

SDPMP STARS Demonstration Project Management Plan
SDR State Date Repository

SEE Software Engineering Environment

SEl Software Engineering Institute

SEPG Software Engineering Process Group

SET Software Engineering Technology. Inc.

SMQ Quality Control Directorate

SMX Plans and Engineering Directorate

SPADOC Space Defense Operations Center

SPMS Software Process Management System

SQL Standard Query Language

SSC Space Surveillance Center

SRA Systems Research and Applications Corporation
STARS Software Technology for Adaptable Reliable Systems
SWSC Space and Wamning Systems Center

TCP/IP Transmission Control Protocol/Internet Protocol
TW/AA Tactical Warning/Attack Assessment

UNAS Universal Network Architecture Services
USSPACECOM United States Space Command

Acronyms and Defimitions

A-3

July 25, 1994

WBS Work Breakdown Structure

VADS Verdix Ada Development System

Definitions

1

)}

(3

4)

Software Engineering Environment

A “software engineering environment” (SEE) is a complex system including many software tools,
hardware components, and network capabilities communicating through standard interfaces. A SEE
provides automated technology support for the people developing systems and the processes they use
to develop the systems. The integration mechanisms of the Loral STARS SEE are Cap Gemini's Pro-
cess Weaver, IBM’s WorkBench, and standard relational databases.

' Process Suppon Ex.vu‘onmem

A “process support ervtronment" (PSE) represents the subset of the SEE that prov1des the mfrastruc-
ture capabilities for supporting the development and execution of a project’s “process support sys-
tem.” The Loral STARS SEE PSE includes Process Weaver, PrOJCCl Catalyst, Software Process
‘Management System (SPMS), and CAT Compass.

Process Support System

A “process support system” (PSS) is the system of processes, practices, guidelines and methods that
guide project personnel in the planning, specification, development and delivery of a target system. A
PSS can be an entirely manual system, partially manual and partially automated, and if practical,
entirely automated. A project's PSS created by the Loral STARS SEE PSE consists of SPMS process
definitions and the SPMS database, Project Catalyst and Process Weaver project process definitions,
and the project’s management plan.

Architecture
Two uses of the term architecture are appropriate:
» The methods used to construct a system - including the prescribed use of:

- Components, such as hardware, software, files, and networking interconnections,
- Interfaces, such as APIs and standard message protocols,

= Tools, such as code generators to assist in using an API, and

= Programming language templates.

* The actual as-built structure of a system constructed using the above approach.

(See also Domain Architecture, Architecture Models)
Further notes on architecture:

+ The word Architecture refers to the “solution space” rather than the “problem space”.

» Note that in a megaprogramming product-line, architectural commonality is given a high
priority - since it is viewed as a prerequisite for large amounts of domain-specific reuse.

* There is a difference between “architecture™ and “models of the architeciure™. The
architecture is how the system is built, and we use models to depict various views of the
architecture. When working out an architecture, one can use models as communication and
analysis vehicles.

Acronyms and Definitions A4 July 25, 1994

» There are numerous valid views of architecture, and many valid modeling approaches to
depict those views. When working out an architectural modeling approach, a project must
decide which particular views are important - given the domain, the technology, and the
people doing the work. The various models will hopefully be consistent - and tool support for
maintaining/checking this consistency may well be appropriate.

The following views are candidates for the SCAI:

. Composition - the building blocks approach: subsystems, CSCIs, CSCs. Further, there are
both static and dynamic subviews of this.

. Abstraction - distinguishing among layers of abstraction in order to separate concems and in
order to allow people to work on portions of the design independently. The Shlaer-Mellor
ideas of Recursive Design (RD) are an example. Static and dynamic subviews may be
appropriate here also (e.g., these-called “bridges” in RD that specify how the higher levels
interact with the lower levels).

» Construction Methodology - the approach for fabricating the software. This should be worked
out in the context of composition and abstraction above, and might be very specific to the
product-line. Subviews of this view might be a set of templates of legal Ada constructs,
SALE., SAS and GACs, and RICC tools/APIs. Again, note that the various views should relate
to each other but it is important to recognize that all of them coexist; they all can be essential
to understanding, communication, and engineering.

. Architecture Model

A set of views of architecture for an application (or a domain) that provides a basis for
communication and analysis. Views can include depictions such as:

- Interfaces and “building block™ composition
- Layers of abstraction, and
- Construction methodology

. Domain Architecture Model (DAM)

An Architecture Model for a family of related applications in a megaprogramming product-
line; the DAM identifies:

- Architectural commonalities, and
- Methods for adapting the common aspects to specific applications in the product-line.

e Application Architecture Model (AAM):

An Architecture Model for an application in a family of retated applications in a
megaprogramming product-line.

(5) Domain Terms

{Note: The motivation for attempting to define this set of terms is that there is much confusion in our
communication, because there are so many different possible meanings for the term “*domain™. It
seems clear that we should seldom use the term “domain™ without some suitable modifier - such as
“application domain™ or “user interface domain™.

. Domain

A cohcrent body of technical discourse that has been sclected to assist in reasoning about a
system or family of systems.

Acronyms and Definitions A-5 July 25, 1994

» Application Domain

A domain that is restricted to the inherent aspects of a problem as distinguished from the
aspects that are peripheral or subsidiary (see Service Domain, e.g.). The purpose in clearly
defining the boundaries between the Application Domain and other domains is to allow
application domain experts to concentrate on those aspects of the problem that they are most
interested in and best suited for.

. Service Domain

A domain that is viewed as subsidiary to a higher domain. The purpose in separating out a
service domain is to remove an area of concern from the discourse of the using domain,
freeing the analysts of the using domain to concentrate on enly the most pertinent aspects. For
example, an Application Domain could be distinguished from a Message I/O domain.

» Subdomain
Usage of this term is discouraged, since its meaning is so prone to misunderstanding!
¢ Application Domain Family

A family of related applications being analyzed as a group due to their similar characteristics:
the motivation for treating them as a family is to identify and exploit commonalities among
the applications so as to maximize “domain-specific” reuse.

For example, in the SWSC we are interested in the Space and Waming Domain Family.

+ Application Domain Subfamily

A subset of the applications in an Application Domain Family that has been called out
because of their strong similarities, allowing focus by specific application experts and giving
rise to the opportunity for focused reuse. In a megaprogramming product-line, the system
solutions for a Subfamily would take advantage of Domain Family reuse, but would tailor/
adapt the Family’s assets in a coherent way across the Subfamily - and they would also take
advantage of assets common to the Subfamily, but not used in other Subfamilies.

For example, in the SWSC we are interested in the “Space” Domain Subfamily of the “Space
and Wamning” Family.

. Product-Line

A set of applications developed and maintained using a megaprogramming paradigm - i.e.,
using a process-driven. domain-specific reuse based. technology supported approach. An
essential characteristic of a product-line organization is the presence of a focal point “Domain
Manager™, responsible for a domain family of applications, as well as the resources and
processes used to develop and maintain them

The Domain Manager may have ownership of other applications in the Domain Family that
are legacy systems and are not considered part of the product-line. The primary objective of
transitioning to a product-line approach is to exploit the commonality among the applications
and to realize a high degree of systematic reuse.

. Domain Analysis

Possible meanings of the term “domain analysis “include:

The process of systematically analyzing a system or family of systems by dividing the
universe of discourse into separate domains with well-defined interfaces. The purposes of
such divisions may include: increasing the ability 1o attain intellectual control, separating out

Acronyms and Definitions A-6 July 25. 1994

common aspects from unique aspects within a family of systems, and arranging for good
encapsulation in system implementations.

The term is used to characterize “problem™ analysis; Domain Analysis is intended to provide
artifacts that clearly characterize the problem to be solved and that serve to enhance the
“solution™ process.

Although the definition allows Domain Analysis to take place for a single system, this is
really just a special case of a family of systems. In other words, even while analyzing a single
system, the analysis method attempts to focus on the essence of the problem and strip out most
implementation considerations. Thus, the analysis work products should be viewed as
supporting a family of application solutions.

» Analysis of the inherent aspects of a single application, avoiding implementation-specific
aspects (e.g.. Ward. Mellor, McManamon/Palmer)

» Analysis that involves separating the application into multiple parts, each of which is subject
to delegated analysis by personnel with expertise in specialized disciplines, such as database
management or operating systems (e.g.. Shiaer/Mellor)

» Analysis of several related applications with the intent of flushing out and exploiting
commonalities. (e.g., Prieto-Diaz, Cohen)

(6) Engineering Terms
* Application Engineering
Engineering (specifying, developing, deploying, and maintaining) a software-based system
solution for an application in accordance with a megaprogramming product-line strategy that
applies to multiple similar applications. (See also Domain Engineering.)

¢ Domain Engineering

Engineering a family of similar applications in accordance with a megaprogramming product-
line strategy. providing a common architectural approach, tools, domain models, and other
reusable artifacts for the entire family. (See also Application Engineers.)

¢ Database Engineering

Team responsible for engineering the common state data used for an application or family of
applications. This may involve modeling the data, developing schemas, defining data
dictionaries, and designing queries.

. Distributed Processing Requirements

Allocation of the capabilities of a system to nodes in a network environment and
specifications of their interface and performance characteristics.

(7) RICC - Reusable Integrated Command Center

A generic implementation of a Space and Missile Warning Command Center based on a reusable
architectural infrastructure and an associated tool set. The first instantiation of the RICC was a pilot in
the Missile Warning domain.

. RICC Architectural Infrastructure

Acronyms and Definitions A-7 July 25, 1994

An open systems-based set of APIs and Ada run-time components that were first used to build
the RICC MW pilot, and which are being used to build the SCAI application. These consist of
the Reusable Human Machine Interface (RHMI) for interactive displays, the Generic Message
Parser (GMP) for message handling, and the Query Processor (QP) for database operations.
The infrastructure also includes the Universal Network Architecture Services (UNAS) for the
run-time network executive. (See also RICC and RICC Tools)

. RICC Tools

A set of interactive tools used to generate code to the RICC Architectural Infrastructure APIs.
These consist of Display Builder (DPT - for RHMI), Message Tool (XMT - for GMP), Query
Builder Tool (QBT - for QP), and System Architects Life-Cycle Environment (SALE - for
UNAS). (See also RICC and RICC Architectural Infrastructure).

Acronyms and Definitions A-8 July 25, 1994

Appendix B

Technologies Contributing to SCAI

Background Technologies

The Appendix will cover the technologies being used on the SCAI project that have influenced the project’s technical
approach. Many state-of-the-art incumbent technologies existed within the SWSC prior to the arrival of STARS tech-
nologies. This appendix provides descriptions of the incumbent technologies, the STARS technologies, and a descrip-
tion of a technology for defining processes created as a result of a process affiliate relationship with the Software
Engineering Institute (SEI).

(1) Technologies already in use at the SWSC at the start of the Demonstration Project (incumbent)

» Corporate Information Management (CIM) Process Initiative
* Reusable Integrated Command Center (RICC)
¢ Mission Operation/Information Analysis (MOIA)
* Booch Object Oriented Analysis
* TRW Ada Process Model
(2) STARS Technologies
¢ STARS Process-Driven Development
. Automated Process Support Tools

- ProjectCatalyst

- Process Weaver

- Software Process Management System (SPMS)
- CAT Compass

- Amadeus

o Cleanroom Software Engineering Process
. Domain Analysis Process Model (DAPM)
(3) SCAVSTARS/SEI Process-Driven Technologies

¢ Information Organizer Templates

Incumbent Technologies

Corporate Information Management (CIM) Process Initiative

The Deputy Assistant Secretary of Defense (DASD) for Information Management (IM) sponsored a Corporate Infor-
mation Management (CIM) workshop of the processes performed in conducting software maintenance at the SWSC.
DASD IM commissioned a Joint Services’ CIM Work Group to conduct this workshop and improve the activities
associated with the SWSC. The group conducted its modeling efforts in accordance with DOD 8020.1-M. Functional
Process Improvement Program. 1 October 1992. Parnticipants included personnel familiar with the operation of the

Technoiogies Contributing 10 SCAI B-1 July 25,1994

SWSC, the Integrated Tactical Warning/Attack Assessment (TW/AA) configuration control process. and operations
within the Cheyenne Mountain Air Force Base (CMAFB). The Integrated Computer Aided Manufacturing (ICAM)
Definition (IDEF) techniques wer: employed to do the business process models.

The CIM program is aimed at changing the way people work in the DoD so that the DoD operates with cost optimiza-
tion and performance excellence objectives. To implement the CIM initiative, the DoD has created a Business Process
Improvement Program (BPIP) to encourage a consistent application of process improvement principles and tech-
niques across its services and agencies. The objectives of these techniques is to eliminate duplication of functions and
the redundancy of business processes and information systems. The BPIP contains general concepts and steps associ-
ated with business process improvement and incorporates the development of a business case for evaluating invest-
ments.

*The DoD is using business process improvement workshops to identify inefficiencies, poor business practices, and
costly non-value added activities. These workshops enable functional managers to identify current problems, estab-

lish costs for business activities, propose change alternatives, and implement business improvements in their organi-
zations and business processes.2

The key objectives of the BPIP include:

(1) Building a model and establishing cost and performance measures of the baseline to enable the orga-
nization to demonstrate improvements.

(2) Identifying and eliminating non-value added activities.

(3) Simplifying, integrating, and streamlining value added activities.

(4) Emphasizing reuse of assets whenever possible.

(5) Automating only after underlying business processes have been cleaned up.

(6) Aligning goals. policies, and procedures within the CIM Integration Architecture (the reference
model that guides all information systems implementation activities providing a strategic framework
for making decisions that affect the DoD information infrastructure).

(7) Integrating processes. physical assets, organizations, and data as appropriate to gain economies of
cumulative volume and limited redundancy.

To achieve these objectives the CIM Function Process Improvement Technology was developed. It is composed of six
key procedures which are further decomposed into subordinate procedures. The following identification and defini-
tion of the main procedures is followed by an explanation of the SWSC implementation (or planned implementation)
of that procedure.

(1) Establish Functional Project Framework

The initiation and planning of the project is performed during this activity. It includes developing
business overviews, weighing and selecting objectives, determining opportunity areas, and establish-
ing the project scope.

The scope of the SWSC software maintenance process modeled and posted includes the following:
activities performed by the operator/day staff, creation and coordination of Incident Reports (IRs) and
Modifications (MOD) Software Change Forms (SCFs), SWSC planning baseline control. engineering
and daily support, and the Integrated TW/AA Configuration Management Process.

(2) Document and Analyze Current Baseline

1. Space and Waming Systems Center (SWSC), Corporate Information Management (CIM) Team, Section | Introduction, Business Process
Improvement Analysis of SWSC Software Maintenance. Activity Based Costing (ABC) F oundation Workshop, Systems Rescarch and Applica-
tions Corporation (SRA) at Peterson Al‘B, Colorado Springs, CO, pg 1-1.

2. D. Appleton Company, Inc., Business Process Improvement: The CIM Inimative, Corporate Information Management Process Improvement
Methodolosy, 1. Appleton Company, Inc. Second Edition, (3028 Javier Road, Suite 400 Fairfax, VA 22031 (703) 573-7644 1993) pg 6.

Technologies Contributing 10 SCAL B-2 July 25, 1994

During this activity the current business process including the cost of each individual activity is iden-
tified. IDEF an activity modeling technique developed by the United States Air Force, has been
mandated by the CIM Information Technology Policy Board as the mandatory technique to use for
modeling the business processes.

The IDEFymodels arc then used to drive the Activity Based Costing (ABC) process. The ABC tech-
niques reorganize traditional financial information to show functional managers what they do with
money, rather than how they spend it. It helps characterize the value of, or need for, each activity.

For the SWSC, the AS-IS process defines the software maintenance process beginning with the rec-
ognition of a problem or definition of a desired change and continues through the implementation of a
vertical release. Included are the activities assocnated with processing SCF's through the Integrated
TW/AA configuration control process.

(3) Perform Business Improvement Analysis

During this activity the team determines the applicable best business practice for improvement oppor-
tunities to the current business process and defines alternative business processes with associated cost
and risk for each. Data models for the alternative processes are developed, and alternatives are evalu-
ated for cost benefit to the baseline. The most cost-effective alternative is selected and recommend as
the TO-BE business process aliemative.,

For the SWSC Software Maintenance Business Process Improvement Analysis, the processes being
developed on the SCAI Demonstration Project are being used as the basis for creating the SWSC TO-
BE activity model. It is anticipated that the SCAI process will eventually replace the current process.
The actual migration of the SWSC to the SCAI megaprogramming development strategy is antici-
pated to require a 5 to 10 year commitment.

(4) Develop Management Plan and Functional Economic Analysis (FEA)

The activities during this process define the management decision and documentation processes. A
Functional Economic Analysis is completed on the technical alternatives and presented for manage-
ment decision. The function portion of this analysis helps people understand what an organization
does, how well it accomplished its mission, and how its processes can be improved by creating a pic-
ture of how the business is run on a day-to-day basis. The economic analysis helps people understand
the potential value or future economic benefits of specified investments.

The FEA analysis of the SCAI process will be used to support the development of the business case
which presents the benefits of using a megaprogramming development strategy. This analysis will be
used to support the transition of the SCAI technologies throughout the SWSC organization.

(5) Review and Approve Program

During this step. the management decision is reviewed by appropriate approval authorities for policy,
programming and acquisition. If approved, the action plan is implemented.

(6) Execute Functional Process Improvement (FPI) Program Decisions

This process puts into effect the new business plan established for the organization.

The CIM Business Process Improvement Analysis of the SWSC Software Maintenance Process and the Activity
Based Costing Foundation Workshop for the November version of the high level SCAI Process Architecture have
been accomplished. The workshop evaluated the SCAI approach to software development and maintenance. and
appropriate alternatives to that approach from a functional and economic perspective. The following alternatives were
developed by the workshop:

(1) Alternative A - Implement the SCAI paradigm across the SWSC organization for Space and Warning
Control Systems.

Technologies Contnbuting to SCAI B-3 July 25, 1994

(2) Alternative B - Using the current baseline process and augmenting it with a compilation of amicable
processes and management chances to improve the existing process.

(3) Abternative C - The status quo. Continue to do business without making any change in the process.

An FEA workshop will be done to accomplish complete analysis of the alternatives.

Design/IDEF, developed by Meta Software, is an automated support technology for developing IDEF models. It is
being used on the SCAI to document the high level Process Architecture.

Reusable Integrated Command Center (RICC).

RICC is, a technology developed for the SWSC by TRW under the Air Force Embedded Computer Resources Sup-
port Improvement Program, and includes tools for generating Ada code, definition files for applications and some
reusable domain components. It was developed in response to the observation that the relatively diverse set of C* sys-
tems, have a large subset of common requirements. The commonality or requirements suggested that significant sys-
tem development and maintenance leverage could be obtained by developing reusable software to satisfy those
common requirements,

Figure 11 depicts the general functions which are performed by most c? centers, In general C2 centers receive mis-
sion status and data messages from external sensor sites and/or other C2 centers. C2 centers also output mission
assessment, status, and command messages to the external sensor sites and C* centers. The Communication function
must provide the capability to process the protocols used to communicate this message traffic. There are a number of
standard protocols and consequently this function is a good candidate for incorporating into a C* infrastructure.

s A
Display Processing

S ——
Communications

Z . / l Data Base
Function

Mission
R g s
>

>Test and Simulation Events

Data Base

Figure 1. Typical Command Center Functionality

The Communication function provides the input and output message processing. The input message function receives
inbound external messages from extemnal entities, extracts the various fields from the message, converts the fields to
internal data types as required. and validates the data for each of the fields to ensure that the raessage is valid. Follow-
ing validation of the input message, the converted and validated data is given to the mission algurithm functions for
processing or stored directly in the database. On the output side, the output message processing starts with the receipt
of mission data from either the Mission Algorithms or from the Command Center User to be sent to external entities.
Then Communication function formats the data into the correct external message format and transmits the messages.
Both external input and output message formats are typically unique to the missions being performed. However, the
functions performed in input and output message processing are basically common from one C* system to another.
Thus it is possible to develop generic data driven message processing software which is tailored for specific missions
via mission specific database data describing the formats of the messages.

The Mission functions receive mission data from both external message sources and from the operator. These algo-
rithms will process the input mission data and then make the processed data available for output to either external
entities via the Communications function or to the operator via th:e Displays function. Mission algorithms are typi-
cally very unique to the specific mission of the C2 center and consequently are not good candidates for a C< infra-
structure. However, it should be noted thal there are some portions of mission algorithms which are good candidates
for the reuse or infrastructure. An example of this is the orbit predication function which is required by many Space
and Missile related C* centers.

Technologies Contributing to SCAI B-4 July 25, 1994

The Data Base provides the repository for information received from external sources and other information gener-
ated by the Mission functions.

The final function common to all C2centers is the Operator Interface. This function receives mission data from the
Mission Algorithm functions, convents and formats the data as required and then outputs the data to the C2 center
operators’ consoles. The data displayed occurs as a result of information forced on the user, such as alarms, or data
requested by the user. This function also accepts inputs from the operator to initiate, control, and terminate mission
processing. The specific displays and control features provided are normally very specific to the particular C“ mis-
sion. However, these displays and controls can be composed from a more basic set of interface objects which are
common among various C< centers such as menus, commands, forms, graphs, maps, etc. Thus it is possible to
develop generic, data driven operator interface software which is tailored for specific missions via mission specific
database data describing the interface objects of the displays.

Significant commonality exists between c? systems and the common portions tend to be the most technically chal-
lenging, costly, and risky areas of the system design and implementation. By developing a reusable software infra-
structure which addresses these common requirements, dramatic savings in development cost and schedule time for a
given C“ can be attained.

The C2 Architectural Goal is to provide a reusable C2 sofiware infrastructure. Figure 12 is an abstract representation

of the layers that are essential to the implementation of a C“Center, and the Command and Control Architectural
Infrastructure layer represents the functionality provided by RICC and Universal Network Architecture Services

(UNAS).
Missile = =
; whsale 7 : Space 7 ‘
aasssasaaal
Sensor i :
i
lassssssasal
System Message Handling Data Management | User Interface :
Services | ervices Services Services ggg&g’
Command & Control Architectural Infrastructure

DoD TAFIM compliam COTS SW

N

COTS HW

Figure 2, C2 Architectural Goal

Mission Operation/Information Analysis (MOIA)

Mission Operation/Information Analysis (MOIA) is an analysis method, using IDEFgnotation which looks at the
low-level operations of a command center from the point of view of the user. It was created to bridge the classic gap
between users and developers: the transition from operational requirements to system requirements. MOIA employs a
four phase methodology to analyze and define the activities and information employed by a work center in fulfilling
its assigned responsibilities. Each phase is described as follows:

(1) Phase lidentifies and describes the activities which are conducted in a work center. MOIA methodol-
ogy is system independent and captures all activities, manual and automated. The end products of
Phase [are:

* aserics of MOIA diagrams using IDEF(ydiagraming techniques, and

Technologies Contributing to SCAI B-S July 25. 1994

. activity reports.

(2) Phase Il associates external inputs with outputs, and vice versa. for each activity at its lowest level.
Once the associative process is complete, then candidates for automation or improved automation are
identified; allocated 1o existing or planned systems; and based upon the operations benefit derived
from automation and frequency of occurrence, assigned a priority for Implementation.

(3) Phase 1l involves the analysis of existing program or cost data to determine which candidates for
automation associated with a particular system are in the baseline for system development projects
already underway. Candidates which are not in a baseline are identified as gaps or shortfalls.

(4) Phase 1V develops a plan of action for acquisition adjustments, Pre-Planned Productivity Improve-
ments, or other programmatic actions to satisfy all requirements. In the case of existing programs, this
implementation plan recommends appropriate acquisition adjustments if any gap or shortfall was pri-
oritized high enough to warrant changing the program baseline. For new programs, the implementa-
tion plan identifies how many of the prioritized items could be paid for with available dollars.

Each of the phases builds upon the previous phase. Once all four phases are completed on a work center, a compre-
hensive information flow, shonfalls, and implementation plan is available for that center.

Booch Object Oriented Analysis

Like all good object oriented methods, the Booch Method is primarily a means of developing and communicating the
design for a system or a family of systems. The development of models of a system occurs in stages that allow for
concentration on certain aspects of a system at a time. This approach acknowledges the distinct probability that dur-
ing the first look at requirements and mapping them to design, requirements understanding will change. Therefore
there is a need to continually integrate discoveries irto one underlying model, that is, the process iterates between
analysis and design.

The Booch Method is accomplished in three steps:
(1) Requirements Analysis provides the basic charter for the systems functions.

(2) Domain Analysis provides the key logical structure of the system.
(3) Design provides the key physical structure of the system and maps the logical structure to it.

Both analysis and design processes are iterative and incremental. When ambiguities or omissions are discovered in
the analysis model it is appropriate to return to analysis activity and then continue the iterative process.

TRW Ada Process Model

Walker Royce's TRW Ada Process Model was designed to address design breakage due to carly unknowns in large
complex sysiems developments. The key strategies inherent in this approach are directly aimed at the three main con-
tributors to software discconomy of scale: minimizing the overhead and inaccuracy of interpersonal communications,
eliminating rework, and converging requirements stability early in the development life-cycle. These objectives are
achieved by:

(1) Requiring continuous and early convergence of individual solutions using Ada as the life-cycle lan-
guage.

(2) Evolving solution as rapidly as practical to eliminate ambiguitics and unknowns in the problem state-
ment by prioritizing development of real code increments of capability.

The objectives are accomplished through the following practices:
(1) Design Integration - Unlike conventional software development which enforces the concept of post-

ponement of all coding until after Critical Design Review (CDR), the Ada Process Model requires the
carly development of a Software Architecture Skeleton (SAS) which corresponds directly to the top-

Technologies Contnibuting to SCAI B-6 July 285, 1994

level components and their interfaces. The SAS provides a vehicle for early interface definition by
compiling these top-level components, and providing adequate drivers/stubs so that they can be exe-
cuted to evaluate design quality. This forces early baselining of the software interfaces which in turm
permits smooth development and avoidance of downstream breakage.

(2) Demonstration-Based Design Review - Again, unlike conventional approaches which rely on paper
demonstrations of design comrectness, the Ada Process Model employs demonstrations during design

reviews to provide validation of design correctness.

(3) Total Ouality Management -The use of Ada throughout the life-cycle permits consistent software met-
rics across the sofiware development work force and the demonstrations serve to provide software
developers with tangible progress indicators.

(4) Incremental Development - This well-known software engineering technique is employed because of
the need to adjust build content and schedule as more accurate assessments of all factors can be made.

STARS Technologies
STARS Process-Driven Development

To improve software quality and productivity, STARS felt it was necessary to focus attention on the software process
being employed and the means used for delivering them. The success of software development organizations is
directly related to the quality of the products they produce. When organizations have no training or consistent
approach to repeat their results, they are dependent on the resourcefulness of the people they employ and they are
likely to achieve pockets of success rather than success across all levels of the organization.

The concepts and approaches which define the STARS Process Driven Development approach for increasing the pro-
ductivity, reliability and quality of critical government software systems are designed to help organizations and
projects to achieve process capabilities such as those characterized by the higher levels of practice in the Software
Engineering Institute’s (SEI's) Capability Maturity Model (CMM).

What Process Driven Development means to organizations is that:2

(1) Organizational processes are formally or semi-formally defined, are globally known and visible
throughout the organization, and are adaptable and tailorable to meet project and product goals.

(2) System and softiware development is guided by a defined process for all activities from the system
inception (or beginning of the organization's involvement) through system deployment, evolution,
and eventual retirement.

(3) Environments and tools are integrated to support a defined process.

(4) Defined processes promote collaboration and teamwork by making activities, roles, and dependencies
clear.

(5) Process definitions are developed, maintained. evolved, and reused with a level of concern and disci-
pline approaching that applied to software products themselves.

(6) Process definition disciplines are improved through manual and automated measurement and feed-
back techniques.

(7) Process definitions are installed and guidance is available through documentation or tied to automated
tool invocation,

1. Technical Report 85.0170, STARS Process Concepts Summazy, December 1992, Hal Hart (TRW), Jerry Doland (Paramax), Dick Drake (IBM),
William Ett (IBM), Jim King (Boing), Herb Krasner (Krasner Consulting), 1.eon J. Osterweil (univ. of Califorma at Irvine), James Over (SED,
Tern Payton (Paramax), Co-ordinated by L.eaming Resource Center IBM, Gaithersburg, Maryland 20879 pg. 2

2. Technical Report 85.0170, ST 8 Process Concepts Summary, pg 2.

Technologies Contributing to SCAI R7 July 25, 1994

The early efforts of the STARS program were to explore innovative solutions to improve the management and control
of the complex and varied activities (sofiware process management) required to develop, field, and support Mission
Critical Computer Resource (MCCR) software. STARS aimed to establish capabilities to support tailorable process
definition and management which involved the ability to define, monitor, measure, control, and continuously improve
the activities that make up the software life-cycle processes.l Software process management is a key focus of the
STARS process-driven paradigm, and the Loral STARS team has focused attention on providing automated support
for process-driven project planning, measurements, and automated process enactment to further an organization’s
ability to manage and control a project and its processes.

Several technologies have been developed to support the STARS process definition and improvement strategy. Pro-
cess definition requires the specification of the identified processes. where specification includes a process model and
a process definition document (also referred 1o as a process guide) which describes the relevant set of activities, arti-
facts, and agents: the relationships within and among those three classes; and the behavior of the entire set of entities
and relationships. Given these documents, the process can be enacted by humans. 2 processes may be defined so that
they are manually enactable, where a human follows a written procedure, or automated, where a computer coaches a
human on what to do next given their current state. The focus on the SCAI project is to support both manual and auto-
mated enactment.

Automated Process Support Tools

The enactment of SCAI processes is supported by a number of automated tools, namely: ProjectCatalyst, Process
Weaver and SPMS. CAT Compass and Amadeus support project and process management.

ProjectCatalyst

ProjectCatalyst was developed by Loral STARS teammate Software Engincering Technology, Incorporated (SET)
and is a family of integrated software components which:

(1) Supports task dispatching and monitoring.

{2) Guides the engineer in following the defined process.

(3) Provides the necessary files and tools to the engineer performing process tasks.
(4) Manages complex paraliel process activities.

(5) Facilitate team communication by automaticaily maintaining task status and tracking t: sk prerequi-
sites.

(6) Reports task. product and milestone status to SPMS.
(7) Gathers effort, schedule and quality measures for presentation by Amadeus.

ProjectCatalyst provides these functions through the use of Process Weaver.

Process Weaver

Process Weaver was developed by Cap Gemini. It functions as the process cnactment component of the ProjectCata-
lyst tools. It provides the interface to the users and supports the management of dispatched tasks.

Software Process Management System

The Software Process Management System was developed with Loral STARS teammate Cedar Creck Process Engi-
neering and supports process definition through process modeling. SPMS supports an Entry, Task, Validation, Exit
(ETVX) process definition paradigm, which is conducive to the enactable process definition focus of Information
Organizaton Templates.

1. STARS Workshop Process Management, Dick Drake, STARS Newsletter, Volume {1, Number |, March 1991 pp S
2. James W. Amutage, Marc | Kellner, Richard W. Phillips, Software Process Defimtion Guide, Content of Fnactable Software Process Defini-
tions, Guide SEI-93.SR-18, Software Engineering Insutute, Camegie-Mellon University August 1993, pages 2 5

Technologies Contnibuting to SCAL H-8 July 25, 1994

SPMS provides the capabilities to model and continually refine an organization’s process definition. It also provides
the capabilities to instantiate the defined process for a particular project through the inclusion of time and resource
scheduling. SPMS interfaces with a project planner package, CAT Compass to provide project management with pro-
cess-driven project management capabilities. SPMS includes support for:

(1) Process and measurement definition

(2) Process driven plan generation
(3) Scheduling

(4) Resource allocation

(S) Plan simulation

(6) Plan monitoring

SPMS will allow the SCAI project to focus on the vital process issues of cost, schedule, and quality.
CAT Compass

Cat Compass provides the project planning and reporting capability.

Amadeus

Amadeus was developed by Amadeus Software Research and is a software product that automates measurement
activities within a software engineering environment. Amadeus consists of + ‘veral software components, the heart of
which is an interpreter. This component monitors significant events such as : >l invocations, changes in source files
or documents, creation of software problem reports, expiration of time intervals, or changes in collected measure-
ments, and invokes other components called agents, to respond to the events. Some of the agents perform collection
of measurement data, while others analyze the data or produce visualizations of the data, or feed it back into the
development process.

Cleanroom Software Engineering Process

The Cleanroom Software Engineering approach to quality software development is based on over 25 years of devel-
opment, verification and testing experience by Dr. Harlan D. Mills and his associates, first at IBM and subsequently at
SET. Cleanroom provides a tightly integrated approach from specification preparation through software development
to software certification, which brings engineering rigor and intetlectual control to the software development process.
Cleanroom processes and practices have demonstrated improved programmer productivity and software correctness
and reliability.

The fundamental notion of Cleanroom is the necessity for the engineering staff to maintain intellectual control over
the project. Intellectual control is the ability to clearly understand and describe the problem at hand at the desired
level of abstraction. Cleanroom uses a number of organization and technological strategies to help the engineer main-
tain intellectual control over the software project.

With Cleanroom, there are three teams that each handle different aspects of the software development process. The
teams are as follows:

(1) The Specification Team prepares and maintains the specifications.

(2) The Development Team designs and builds one or more software increments. The resulting source
code, prior 10 any compilation, is turned over to the Certification Team. They are also responsible for
isolating and making any changes necessary to the increment as a result of problems. Large projects
have multiple Development Teams.

(3) Each Centification Team prepares test cases for an increment and when the increment is submitted for
certification they perform the tests and prepare the centification report. The Cenification Team exe-
cutes the code. but does not modify it in any way.

Technologies Contnbuting to SCAI B-9 July 25, 1994

Cleanroom specifications are developed in a spiral manner, with each iteration making the specifications more com-
plete. A Cleanroom Specification is comprised of six volumes:

(1) Mission: A precise statement of the requirements for the soft ware system, primarily functionality and
performance.

(2) User's Reference Manual: A definition of the stimuli and responses invented so the software can ful-
fill its mission. This volume addresses 'look and feel' issues, as well as performance.

(3) Software Function: A black box function that defines software responses in terms of stimuli histories
(i.e. in an implementation-free manner). This volume clearly describes the functional behavior of the
software.

(4) Specification Verification: A rigorous argument chat the software as defined will meet its defined mis-
sion.

(5) Software Usage Profile: A Markov Model stating the probability of moving from each usage state to
all other usage states. This volume describes how the software is to be used, in terms of sequences of
state transitions, according to a projection of how the software will actually be used. Every possible
state that a system can be in described. with probabilities associated with all possible next states that
can be reached from a particular state as a result of a single transition. The Usage Profile can be repre-
sented in terms of a state transition diagram or a matrix. This volume may also include test fragments
for each transition, which can be concatenated, as a result of statistically generating a path through the
software, into a test case.

(6) Construciion Plan: A plan for building the software in a series of increments such that each accumula-
tion of increments is executable by user stimuli. The development of the construction plan requires
significant effort to determine a definable series of user executed increments. Increments of 5000 to
10000 lines of code, which require approximately 6 to 8 weeks of effort for a Development Team,
typically have been utilized.

Domain Analysis Process Model

Reuben Prieto-Diaz created a systematic, repeatable process for doing Domain Analysis, which can be described as:
“systems analysis for a class of systems.” or “the activity of identifying the objects and operations of a class of similar
systems in particular problem domain™. The objective of Domain Analysis is to discover and define domain models
and architectures common to a family of applications for supporting pre-planned reuse.

Following is a sketch of the Domain Analysis Process at a very high level:

(1) Select the Domain with the Highest Reuse Potential
» Look at Current Projects: Scope and Define the Domain
» Evaluate Curreny/Future Needs, Current Practice, Feasibility
» Define Purpose

(2) Top-Down Analysis
« Identify High Level Architecture and Functional Model
. Select Functional Components with High Reuse Potential
* Re-define Architecture (with Reuse in Mind)

(3) Bottom-up Analysis

. Vocabulary Analysis

Technologies Contbuting to SCAL B-10 July 25, 1994

« Classification Model
¢ Functional Clustering
(4) Derive Generic Architecture
* Map Bottom-up Functions into Architecture
¢ Adapt Architecture
* Derive Other Models

Outputs of this process are:
(1) Domain Definition

(2) High Level Domain Model/Architecture
(3) Faceted Classification

(4) Domain Vocabulary

(5) Reusable Structures

The unique aspect of the process is the bottom-up part of the analysis. The contention is that by examining systems
and systems documentation, common terms can be derived that are general to the whole domain. More specific terms
can be grouped under more general terms called facets. The more specific terms are deemed facet-terms. So, poten-
tially, a domain analyst can uncover generality simply by understanding language. Relationships can be generated
between the facets so that “standard descriptors” can be generated for the domain. Standard descriptors can represent
generic functions in the domain. For example, an early attempt at reuse was when Booch defined a set of general Ada
Components managing standard data types like stacks and queues. A standard descriptor for Booch Components,
where parenthesized items are facets, would be: Component of type (Role) consists of or operates on (Structure), has
(Concurrency) and (Space_form), performs (functions(s)) on (object(s)), using (Method). The facets for the Booch
classification scheme are in parenthesis.

SCAI/STARS/SEI Process-Driven Technologies

Information Organizer Templates

Information Organizer Templates, a mechanism to support the definition of manually enactable processes, has been
developed as a result of a Process Definition Technology Partnership between the SCAI project and the Software
Engineering Institute (SEI). The partnership was intended to develop prototype products, and collaborate on solutions
to technical problems. The templates identify all the information required to make a process manually enactable. In
order to avoid overwhelming the potential process definers or process users, the team devised a way to subdivide the
information into categories, which also represent convenient stages for the process definer to follow when developing
the process definition. .

(1) Stage 1: Process Layout: Show overall flow of activities and work products defining what is to be
accomplished by a given process; available in an enactable process guide for reference as a navigation
aid during enactment.

(2) Stage 2: Process Design: Include lower level refinements beyond information necessary to just depict
process layout, such as the methods that describe how an activity's results are to be accomplished, and
the agents responsible for performing the activities. This information is documented in an enactable
process guide for reference as needed prior to and during enactment.

1. Linda Parker Gates, Richard W. Phillips, STARS/SEI Technology Transition Expenience Report November 30, 1993, Software Engincering
Institute, Camegie Metlon University Pitsburgh, Pennsylvania pg.19

Technologies Contnbuting to SCAI B-11 July 25, 1994

3

4)
5
(6)
)

Stage 3: Process Enactment: Include the process information that is necessary during enactment to
govern the process (such as activity and artifact states) or information that describes specific process
discipline actions to perform during enactment (such as when to verify or validate a result, when to
record product and process metrics, when to log status, when to communicate status to others, or
solicit status from others, and how to determine which activity in the process is to be performed next
upon completion of a given aclivity).

Defining a sct of metrics which could verify the successful achievement of the goals,
Establishing an approach for capture and collection of the metrics,
Defining an approach to presenting and analyzing the measurement results,

Instituting a continuous improvement cycle for the measurement process itself.

The approach to metrics definition will be both top down and bottom up. From a top down perspective the project
goals will be defined and refined. The purpose of the metrics activity is to determine if the goals are being reached.
The goals provide the rationale for the actual measurements collected. You could also think of the goals as providing

requirements on the metrics activity.

Technologies Contributing to SCAI B-12

July 25, 1994

Appendix C

Megaprogramming: Enabling the Future
SWSC Product-Line

The SWSC is responsible for the maintenance of a wide range of space and warning c? applications. The
SWSC’s long-range intent is to manage as many systems as possible within this domain of applications
using a coherent process; and the envisioned product-line organization is intended to facilitate this type of
management. There are three fundamental prerequisites for a successful product-line organization: a
domain manager responsible for all applications in the product-line, sufficient commonality among the
applications to allow management of the entire set as a whole, and enabling technology to facilitate the
systematic management and engineering work.

Domain Manager

Figure 1. depicts a possible future product-line organization and shows how the three STARS technology
areas combine to enable a product-line way of doing business. The SWSC Commander would serve as the
Domain Manager in this organization. ldeally, the Domain Manager will be in a position to make trade-
offs between individual application objectives and overall product-line evolution objectives. As an exam-
ple of this type of trade-off, it might be appropriate to build a new reusable asset that will greatly enhance
the efficiency of the total organization (enabling the SWSC to build future systems “cheaper, better,
faster”), but in order to build this new asset, there might be some impact to the cost and schedule of one or
more applications.

Megaprogramming
Technology Area

Domain-
: ¢ Architecture

Specific
Reuse

*Domain Modeling

*Reuse Management

. iwo Life-Cycle model

*Domain mgt strategy
*State-of-the-art processes

*Process Definition
Automated
Support

eImprovement Process
Figure 1. Megaprogramming: Enabling a Future Product-line Organization

Product-line Organization

sPlans, Molicies

Space & Waming e Resource Alloc
Product-line *Mgt Support S&wW
Domain
‘ngineenng

*Reuse Strategy
somain Models
*Domain

Space Sub-Family

Systematic
’rocess

*Reuse Library
eConfiguration Mgt

Technology
Suppon

oSEE
eProcess
eMethods

*Metncs

*Open arch, COTS tools

¢ Pracess-support tools

s Process-centric integration
- Plan tied to process
- Tool use ted to process
- Data mgttied to process

Application Sub-families

Applications in the SWSC product-line will be developed and maintained using a common Application
Engineering process that maximizes the reuse of common product-line assets, including process compo-

Megaprogrammung: nabling the Future SWSC Produat-1.ine C-1 July 28, 1994

nents, software components, models, software engineering environments and tools, etc. As shown in
Figure 1., these applications may be further divided into sub-families based on the opportunity for addi-
tional layers of reuse.

Domain Engineering

Domain Engineering is the engineering arm of the organization charged with determining the commonal-
ity in the requirements of the domain’s applications and deriving and evolving the best architectural
approach tc building those applications - which includes identifying reusable software components, code
generators, and the like.

Domain Asset Management

Domain Asset Management provides storage and management of all product-line assets of all types (pro-
cess components, software components, models, specifications, etc.), facilitating the proper use of those
assets across the entire product-line.

Technology Support

Technology Support identifies, develops, evolves and supports the organization’s common processes and
methods. It also provides the software engineering environment, which provides automated assistance for

applying the processes.
Megaprogramming Technology Emphases During the Demonstration Project

To prepare for this type of organization, the SWSC is working with STARS to mature its technological
approach, using the SCAI Demonstration Project as its primary vehicle. As discussed below, the SWSC and
its existing contractor base have already made substantial progress towards megaprogramming; thus,
more attention is being given to some areas than others.

(1) Domain-specific Reuse

Prior to forming the partnership with STARS, the SWSC had already established an excel-
lent head-start in this technology area through its work with TRW on a reusable architec-
tural infrastructure - culminating in the Reusable Integrated Command Center (RICC). This
provided an architectural starting point for the SCAIL The SWSC’s primary focus in domain-
specific reuse during the SCAI project is systematizing the use of the architectural infra-
structure and building up Domain and Application Engineering (DE and AE) processes.
Heavy emphasis is being given to various types of modeling as a means of capturing the
requirements for the SCAI application, specifying its architecture, and following these mod-
els through to the executing system. The abstractions being developed during this activity
are being chosen to insure that the models will form the starting point for the product-line’s
Domain Engineering modeling work.

(2) Systematic Process

This technology area is the one that is receiving the most emphasis by the Air Force/STARS
partnership. The intent is to build up a coherent process for the SCAI, with emphasis on
Application Engineering, and to establish a repeatable product-line method for recording,
modeling, managing, and applying the process.

(3) Automated Support

STARS is working with the SWSC to build up an integrated software engineering environ-
ment (SEE) to support the SCAI process. Notably, STARS is supplying two new process sup-
port tools and is supporting the integration of those tools with the rest of the SEE to provide
automated support for the process.

V egaprogramming: Enabling the Future SWSC Product-Line C-2 July 25,1994

Appendix D

Iterative Technology Assimilation and
Evolution

Applicability of the STARS CFRP

One of the key principles espoused by STARS is the Plan/Enact/Learn paradigm, as detailed in the STARS
Conceptual Framework for Reuse Processes (CFRP), as illustrated in Figure 2.

Market Forces
Assets
Software S!stems
anizational Context
main Knowledge
Technology

J,

(Reuse Management)

£\

Plan Learn

ﬂleuse Engineering \ y
Create .

A

Manage —v |
\ Use J

Software Systems

Figure 2. Conceptual Framework for Reuse Processes (CFRP)

herative Technology Assimiiation and Evolution D-1 July 25, 1994

The essence of this framework is that introducing anything significantly new is best viewed as an iterative
undertaking; and that if the intent is to reuse the results, the iteration must be consciously managed. Thus,
incremental changes are planned, the changes are applied, and the experience gained in applying the
changes is used to adjust the plan for the next iteration.

For the SCAI project, it is meaningful to consider the CFRP from various points of view, notably:
(1) Formulating an overall technical approach,

(2) Formulating specific approaches in each of the four experience areas,
(3) Developing reusable assets for the domain, and
(4) Developing the SCAI application, including reuse of domain assets.

The first two deal with technology transition and process definition, which were the main activities
addressed by the team during the Preparation Phase. The last two deal with producing application and
domain products. At first glance, the CFRP seems to pertain primarily to items 3 and 4, but the SCAI
team’s experience has demonstrated that it in fact pertains equally well to items 1 and 2. If this fact had
been better appreciated at the outset, the team might have been able to achieve consensus on the approach
more quickly.

In general, the team has found that an iterative approach permeates nearly all significant technical activi-
ties.

The following paragraphs briefly discuss the Preparation Phase experience from each of the above points
of view, in the light of the CFRP:

(1) Formulating an overall technical approach: -

Several characteristics were identified by the SMX directorate that were considered essential
to the approach. It must:

¢ allow for early buy-in by the customer,

* allow for iterative development of the system,
¢ support product-line development, and

® be evolutionarily in nature.

The CFRP iteration began with the Learn point of the cycle with a joint review of the SCAI
objectives and a review of the existing SWSC and STARS technologies and progressed into a
cycle of synthesizing candidate solutions, discussing and documenting them, assessing their
viability, and moving on to the next iteration. Each successive iteration would typically
involve refining/adjusting the solutions defined in the prior iteration, and integrating new
aspects of the approach not previously considered.

At the outset, with the large amount of learning needed on all sides, it was very hard to
develop specific plans for developing the approach. Given the number and sophistication of
the technological changes contemplated, a large number of iterations were needed before
the approach really began to gel. In fact, the first attempt to capture the total approach ina
coherent description was in Version 2.0 of the SCAl Demonstration Project Management
Plan (SDPMP), published at the end of the Preparation period (10/15/93). Although SCAI
development began shortly thereafter, the project realizes that a significant amount of itera-
tion remains ahcad - and in fact, the iteration really continues throughout the life of the
product-line.

The following discussion provides more detail about how this iteration has progressed to
date.

lterative Technology Assimitation and Evolution D-2 July 25,1994

The multi-organizational project had to understand the variety of SWSC incumbent technol-
ogies, the organizations in which those technologies were used, and the STARS technolo-
gies, before the participants could begin the process of integrating the technologies into the
SCAl technical approach. The approach needed to integrate the STARS technologies with
the SCAI incumbent technologies such that the resulting approach met the characteristics
identified by the SMX directorate. The steps that the project planned to iterate through to
develop the approach were:

Understand the organizations contributing to the SCAI project.

Decide/Plan how to integrate incumbent technologies with STARS technologies.
Test the merged technologies in Pilot Projects

Record the processes for applying these merged technologies.

Learn lessons about the merged technologies and record the lessons.
Incrementally, integrate the tool-set associated with the merged technologies.

Enact selected merged processes

(2) Formulating specific approaches in each of the four experience areas:

The CFRP applies equally well to the activities the project has followed in developing the
specific approaches and instrumention of those approaches in each of the four experience
areas discussed in this report. In brief, the project has experienced the following:

Domain/Application Engineering: Defining the DE/AE approach during the
Preparation Phase involved acquiring both domain and technology knowledge
(learn), defining/refining the candidate approach and assessing its viability (enact),
and determining which aspects to address in the next iteration (plan). At each
iteration, the team matured its understanding of both the domain and the technology.
Further, at :ach iteration, the team added more depth to the approach. This
experience is recounted in detail in the DE/ AE section.

Another aspect in which the CFRP applies is to the resulting DE/ AE approach itself.
Domain Engineering for the SWSC is viewed as an iterative activity, starting with the
Application Engineering for the SCAl and using the SCAI AE products as the start of
the DE iteration. As new applications are built, the new experience gained is fed back
into the DE products.

Process Support: The project has iterated on its method for defining process. As the
overall project approach matured, several iterations of the process architecture
occurred. At each stage, the team learned more about how the IDEFg process
modeling method should be applied and how it should be combined with other
modeling methods. At the end of the Preparation Phase, a plan was put in place to
use the adopted process modeling approach to build up the SCAI process
incrementally during the Performance Phase - starting with the Specification Process.
The modeling, and later the enactment, will be done with automated assistance from
a STARS-sponsored process tool suite. It is expected that both the process and the
tool suite will be revised incrementally as the project gains experience with their use.

SEE Support: SEE assembly and integration is being performed iteratively as well,
especially in view of the iterative development of the process.

Metrics: The metrics iteration started with the definition and documentation of the
SCAl project goals. As the project proceeded, the goals were iterated to reflect

It~rative Technology Assimilation and Evolution D-3 July 25, 1994

experience. In addition, the metrics instrumentation in the SEE is being built up
iteratively.

(3) Developing reusable assets for the domain

The SWSC has already done a great deal of iteration to build up its architectural infrastruc-
ture capability. The RICC tool set, which is an outgrowth of prior production work, has gone
through two pilot activities to assess its applicability to the SWSC domain. At each stage of
the iteration, the experience gained was used to enhance the tool set and the methods used
to apply it. Further refinements are anticipated as the SCAI Application Engineering pro-
ceeds through its planned incremental development cycle.

(4) Developing the SCAI application, including reuse of domain assets.

During the Preparation Phase, the team progressed through several iterations of its domain
and application modeling work. At each stage, the team enhanced its domain knowledge
and increased the depth of the models as well. At the close of the Preparation Phase, the
team had begun its specification work, using these models as a basis. During the Perfor-
mance Phase, three SCAI increments are planned. At each stage, experience gained will be
used to update and refine both the models and the specifications.

Iterative Technology Assimilation and Evolution D-4 July 25, 1994

Appendix E
Preliminary DE/AE Approach

This Appendix provides additional details on the SCAI team’s DE/AE experience during the Preparation Phase. This
information will provide insight into the problems faced by the SCAI team while they worked to develop their
approach, as well as the preliminary solutions to some of the problems. The material should be of interest to practitio-
ners in this technology area.

It is important to recognize the preliminary nature of this information. At the conclusion of the Preparation Phase, the
team had established an overall DE/AE approach, had defined a high-level project process architecture, and had initi-
ated an iterative cycle of formal process definition. Accordingly, much of this material is only partially developed.
During the next experience interval, the DE/AE process definition will continue to mature - with the help of early
enactment of selected process components on releases 1 and 2 of the SCAI application. The next version of this Expe-
rience Report will update this material.

This appendix includes the following major sections:
(1) Selected DE/AE Approach Topics

(2) Creating a DE/AE Process

(3) Preliminary SCAI DE/AE Process

Selected DE/AE Approach Topics

This subsection discusses several topics that have proven especially important to the team in guiding the approach
definition work during the Preparation Phase.

Architectural Infrastructure Chip Model
Figure 1 illustrates a typical Command and Control (C2) system of the type maintained by the SWSC.

Display Processing

Forced
-

Response

Mission Function J D@ %ery

Response

P —
Communications

>Tcsz and Simulation Events

Data Base

Figure 1. Typical Command Center Functionality

The SWSC has been attempting to determine a common architectural strategy for such systems for several years. cul-
minating in the RICC architectural infrastructure approach, which is detailed in Appendix B.

The so-called “Chip Diagram”, shown as Figure 2 represents the current architecture concept. The Demonstration
Project is basing the SCAI application on this infrastructure, which is enabled by the RICC tools.

Preliminary DE/AE Approach E-1 July 25, 1994

Missile : Z Mission
Waming Space Specific
P
PTTTTTTTYeY laasanass ool PV

System Messase Handling Data Management | User Interface
Services ervices Services Services

Com}nand & Control Archl.tectural lnfrastruc!ur_e

DoD TAFIM compliant COTS SW |

Z
|

)y
[COTS HW

Figure 2. C2 Architectural Goal

Layered Model Framework

The RICC two layer C2AI chip model, shown above, was abstracted into the layering scheme, which is called the
Layered Model Framework, by adding extra model layers to identify types of reusable components other than the
common service routines, and to further insulate the domain components from change.

The RICC Infrastructure Services. identified as Common Services in Figure 3, are services which are applicable to
the whole CZAI domain. As new systems are analyzed and reengineered via the Domain Engineering /Application
Engineering (DE/AE) process. the intention is to identify multiple instances of existing application services, and gen-
eralize them into new Common Services. Common Services act as Servers to Requesters in layers above the Common
Services Layer.

An Algorithmic Layer. containing common mathematical services, potentially applicable to all SWSC systems, has
been defined. These Algorithms, such as for Orbit Determination, are applicable to more than one system in the
SWSC domain, but probably not applicable to the entire C2AI domain.

Both the Common Services and Algorithmic Layers act as Servers to the Mission (or Event Layer). The Mission layer
models events the system must respond to. It is presumed that there are few missions that are general to all systems in
the domain. Therefore, most Missions reside in the Mission Layer of an Application Architecture Model, not the
Domain Architecture Model.

A Domain Requirements Model (DRM) is a logical, processor-independent, representation of the common objects in
all systems in the domain. Common domain requirements are maintained in the Cleanroom Six Volume System Spec-
ification for the domain.

If the layering structure and rules for using the layers in the domain are consistent across that domain. then the DRM
can be built iteratively. The characteristic layering structure chosen for our Domain Models should be applicable to
the whole SWSC domain and the Space Domain Model Common Services Layer should remain relatively free from
change, even as the scope of the Domain Analysis is extended beyond the Space Subdomain.

The anticipated value of this approach is threefold:

Preliminary DE/AE Approach E-2 July 25, 1994

Air

ission (Event) Layer [Mission Expeits]
Algorithmic Layer |Yahematiclans
L] I

ommon Services Software Engineers
(Data Base, Displays, Message Validation) RICC Expel‘tS

[T 1

. - System Architects
Implementation/Architecture [NAS Experts

S

Figure 3. Layered Model Framework

(1) The relatively cheap a-priori identification of dominant domain characteristic is substituted for the
expensive a-priori Domain Engineering and asset creation for the entire domain.

(2) Domain Models can be validated by use on single systems. Errors are caught before they become
expensive. This is consistent with modern Software Engineering Principles.

(3) Other organizations can examine SCAI processes and technologies after they are validated, and accu-
rately predict the cost of making the same technology transition, without factoring in the cost of a
wide-scoped Domain Engineering.

The DRM layering scheme not only helps identify reuse opportunities, but also identifies the type expertise that can
be localized in produci-line functional organizations.

Experts who understand the Missions in the SWSC domain need only understand the Mission Layer of the Domain
Requirements Model. and need not be software engineers or system architects. These mission domain experts can col-
laborate to identify and abstract common missions across systems; they would benefit from having worked on the
teamns that did the CIM modeling and MOIA predecessor work.

Experts who understand orbits, trajectories and the mathematics behind these topics, can be shared across appropriate
SWSC supported missions, as part of an organization supporting the Algorithmic Layer.

Experts who understand typical software engineering tasks like relational data bases. or message parsing. can be con-
sidered as a pool available to all SWSC missions. They conceptually belong to the Service Layer of the SWSC, and
should be responsible for upgrading and extending RICC services, or substituting services equivalent to RICC.

Architects, experts in creating UNAS System Architecture Skeletons and running trade studies 1o evaluate system
performance, can be viewed as a pool of experience across the SWSC. These experts should also understand how to
identify common templates that enforce common structure or mapping rules when converting the DRM into the

Preliminary DE/AE Approach E-3 July 25, 1994

Domain Architectural Model (DAM). These experts support the implementation/architectural layer of the DRM,
which is a conceptual layer only, and does not relaie to actual Ada components, as do the other DRM layers.

Also being advocated, was a Domain Architecture Model, constructed using the Shlaer-Mellor Recirsive Design
Technique. The architecture model structure, though not the modeling process, was selected by the SCAI project.
This structure was consistent with the architectural model structure advocated by Sholom Cohen and his Feature Ori-

ented Domain Analysis.
SCAI Relationship Between Domain and Application Models

Domain and Application Requirements Models (DRM and ARM) are viewed as a single Booch Class Model. Refer-
ring to Figure 4, classes (and resultant Ada Packages) are either specific to a single application or general to all appli-
cations. Differences between applications are captured using child classes. Similarities between systems are captured
using parent classes. Object Scenario diagrams in the Event Layer are identified as either common to the whole
domain or specific to a single system. For example, the Manual Orbit Determination Scenario is common to Systems
A, B, and C. It uses an Observation object which is also common to all three systems. However, Manual Orbit Deter-
mination also uses a Sensor object, which has different children for Systems B and C.

Domai
Common [Ap;ri::\lgc/)n] Requirements Model DAM

(prescriptive portion of DAM)
Manual Orbit Scena

* Template
Domain OSD§

Application OpDs
Event Layer
Application Ldyer

Domain Classes
Application Clasges

Application C

—_/ (I f

Application B

s

Figure 4. Domain/Application Model Relationship

Preliminary DE/AE Approach E-4 July 25, 1994

SCALI Relationship Between Requirements and Architecture Models

Referring again to Figure 4, there is a mapping shown between the requirements model and the application code of
two applications in the domain. This mapping is accomplished in accordance with the “prescriptive” portion of the
Domain Architecture Model (DAM). This portion provides rules for transforming the requirements model into appli-
cation software. Theoretically. if the requirements model is complete enough, and if the architectural mapping rules
are rigorous enough, this mapping could be automated - i.e.. the application could be built from the requirements
model alone. While this is not a current focus of the SCAI team, interested readers are referred to the Shlaer-Mellor
Recursive Design methodology. which claims to enable such automation.

Not shown explicitly on this diagram is the “descriptive™ aspect of the DAM, which is intended to describe the system
to human analysts attempting to gain intellectual control over how applications are constructed.

The SCALI team views the descriptive portion of the DAM to overlap heavily with the DRM. As can be seen from Fig-
ure 4, some aspects of the architecture of the applications is visible from the OO model. Ideally, one will be able to
easily trace between the as-built application software and the requirements model which led to it.

Preliminary DE/AE Approach E-5 July 25, 1994

Creating a DE/AE Process

Based on the experience in iterating on the DE/AE approach, the team has established a working model of how to go
about defining the DE/AE process (i.e., a formal, well-defined process embodiment of the approach). It should be
pointed out that this amounts to a hypothesis. since the team was still at the early stages of formal process definition
at the conclusion of the Preparation Phase. It i nonetheless offered as a product of the teams’ experience to date.

The following is an outline of the approach to defining the DE/AE Process (Iterate through the following steps):

(1) Develop/Refine and Document the High-Level Approach - including the overall project process
architecture (showing how the DE/AE process works in context with the rest of the project process).

(2) Define/Refine the Process Activity Flow: this describes the work flow of the major process activities,
including the identification of the key anifacts being communicated among the activities.

(3) Define/Refine the Engineering Artifacts: this describes each of the key artifacts mentioned in the
Activity Flow (such as the Cleanroom 6-vol Specification, Object Model, and Architecture Model)
within the context of an overall framework: at this point, the layering notions associated with the
RICC architectural i1.irastructure are introduced, since they pervade all the artifacts.

(4) Define/Refine the Mapping between the Artifacts: this specifies how the artifacts tie together into a
cohesive whole.

(5) Select/Adjust an Architectural Framework.

(6) Detail /improve the Process using Information Organizer Templates: this captures the process to the
level needed for practitioners who are using it 1o build product-line applications. Rather than attempt
1o define the catire process at once. an incremental approach is followed. Modest portions are chosen
for detailing, and the experience gained in executing the selected portions is used to guide further def-
inition activities.

(7) Use the Process and Provide Feedback to the process definition activity to help adjust the approach
and improve the process.

Preliminary DE/AE Process

The prior section presented an iterative high-level “‘process for defining an organization’s DE/AE process”. This sec-
tion traces this meta-process for the SCAI DE/AE process, illustrating each step with considerations and examples
taken from SCAI experience.

This is clearly not a complete process y2t, Further elaboration will continue throughout the project. One of the main
sources of practical input that will help mature these notions is the ongoing SCAI engineering work,

Develop/Refine and Document the High-Level Approach
(1) Two Life-Cycle model - as interpreted for the SCAI

Figure 5. a version of the STARS Two Life-Cycle Process Model shows the Domain Engineering Pro-
cess occurring in parallel with the Application Engineering process and suggest that existing systems
be analyzed. via a Domain Engineering Process. to identify reusable structures prior to the initiation
of Application Engineering. Reusable components are made available before the start of systems
implementation,

Preliminary DE/AE Approach E-6 July 25. 1994

Domain Mansgement

Existing | Domai
. . . N am L
Asr’l::uc ! Domain Analysis ﬁ N "‘ Domain Design | Implementation "\
Domain Regeuinmam Domain Architecture Domain Reusable
Model Model [Components & Generators

New] System
Requjrements

Systems
1 Implementation

System

Figure 5. Two Life-Cycle Process Model

For the SWSC domain, the SCAI Team postulated that given the existence of the RICC technologies,
and the extensive experience the space and warning domain experts had in analyzing systems in the
C2al domain. an informal domain analysis for the SCAI C* domain had already been done. The
MOIA and CIM modeling efforts were also providing space mission operational models as input to
the Space domain modeling effort. It was determined therefore that the initial project efforts should
emphasize the development of Application Engineering processes, and artifacts.

The approach taken to verify that the RICC C2 architectural infrastructure could be applied to the
space domain was to perform a pilot in which two representative space mission capabilities (threads)
were chosen for implementation using the infrastructure. These were Satellite Ground Tracks and
Sensor-Satellite Look Angles.

The SCALI approach was to develop a model of the space portion of the C2 domain because the entire
C2was too large. The team developing the Space Domain Model acknowledged the RICC as the
SCALI architectural infrastructure, and took an incremental approach to developing both models and
modeling methodology.

As aresult of the informal domain analysis that had been performed prior to the beginning of the
SCAIl project, the DE team adapted the STARS Two Life-Cycle process to reflect the SCAI approach
to building modeling artifacts. (See Figure 6.)

Preliminary DE/AE Approach E-7 July 25. 1994

Domain O ional Model
M

Space Model

MOIA, IDEF;x

4 Domain Engineering

Both

[Application Engineering
PL- Product-Line

Dopart
Afalysis

Promote/
Genetalize

Instanti- Prot,e/
ate/Refine prralize

Instanti-
ate/Refine

Figure 6. STARS SCAI Two Life-Cycle Process

The SCAI DE Approach consists of iterating through the following steps:

Define the layering scheme for the Engineering Models.

Define application-level models in support of Application Engineering. (MOIA and IDEFIx
models are detailed models to support the development of the DRM.)

Promote the application-level models to the domain-engineering level after the first SCAI
release and generalize them. (The CIM Space Domain Process Model is used to generalize the
DRM because its broader scope identifies users as well as systems).

Refine the domain-level models through a process of iterative instantiation/refinement during
releases 2 and 3. Continue this process of instantiation/refinement for follow-on product-line
releases.

Modify future application models output products to support maintenance and continued
development of the Two Life-Cycle models.

As reusable components are validated by use in a particular Release, they are saved in a
Reusable Component Library. Off-line RICC Program Generators are also viewed as reusable
assets.

No claims can be made that this iterative approach to Domain Engincering will work for other
domains that are less well understood. or not subject to layering.

Preliminary DE/AE Approach E-8 July 25, 1994

(2)

High-level progression of engineering artifacts.

As part of capturing the high-level approach, the team developed the general artifact progression sum-
marized in Figure 7. The definitions of the Cleanroom specification volumes can be found in Appen-
dix B. The DE/AE operations models, process models and information models form the foundation
for the System level Cleanroom specifications. QO analysis yields the high-level object oriented
model which identifies the major classes and objects. Based on project management objectives and
based on the coherence of clusters of objects, the OO model is divided into release groupings, corre-
sponding to major incremental releases of the application. For each release, the system specification is
refined into a release specification, again using the Cleanroom specification techniques. The release
specifications, in turn, launch the release development activities.

CR System Spec
Vol 1- 73
ol 1-6 F CR Release Spec

A Vol 1-6
3 Message
%s, Display g:f:f

£y

Ry

Figure 7. Engineering Artifact Progression

Define/Refine the Process Activity Flow:

Coupling the features of the above three methods/technologies (Cleanroom Software Specification, Booch Object
Oriented Analysis, Ada Process Model) resulted in the activities shown in Figure 8 which provides a high level
description of the integrated process. Each activity is briefly described below.

(N

@)

Gather System Requirements: Collect information from various sources and scope the system require-
ments. Resolve requirements issues and clarifications iteratively.

Prepare/Refine Specilication: Define the domain/system level requirements. Once the domain/system
level requirements are captured, create a Release-level Specification. The focus is on producing a
Mission Specification (Vol 1) and a Usage Specification (Vol 2). This activity is coupled with the
“Develop/Refine Ohject Model™ activity.

This activity is re-entered (the Refine part) based upon:

Preliminary DE/AE Approach E-

July 25. 1994

Gfilher ! Prepare/Refine
Requirements Specification

:

Develop/Refine
Object Model

!

Develop Incremental Certify

Architecture | .' Software
Model Development B Software

Figure 8. Engineering Workflow

e The Logical View architecture definition. The Cleanroom Black Box Spec (Vol 3) is written

based upon this input. The Black Box Specification is validated against the Class Model
Object Scenario Diagrams.

. User feedback related to requirements as driven by demonstrations.

Once the Object Model & the Architecture Model are baselined. the Cleanroom Black Box Valida-
tion, Usage Profile & Construction Plan (Vol 4-6) are then created.

)] Dévelop/Reﬁne Object Model (Logical View of the Architecture): This activity is a Domain Engi-
neering activity. It is presumed that the SWSC mission is to generalize and reengineer existing sys-
tems in the SWSC domain. An unabstracted object oriented model of the existing system is created.
The model is then abstracted to create a Booch Class Model, or Application Requirements Model.
This abstraction activity can be viewed as “‘reengineering.” Or, if a Requirements Model already
exists for a different system in the same domain, then the Domain Requirements Model is extended
and reabstracted to incorporate the characteristics identified in the unabstracted new system model.
The goal of this abstraction activity is to identify the key abstractions (classes) and key mechanisms
(scenarios) of the problem domain, This analysis is validated by creating an initial System Architec-
ture Skeleton (SAS -part of the Architecture Model), and executing it, “pumping” data into key sce-
narios. Next, the class structure is completely elaborated, and any remaining non-essential scenarios
are defined. This step is highly iterative with the “Develop Architecture Model” activity. These two
activities serve to support the identification of a candidate Domain Architecture Model. At the con-
clusion of this step, the Domain Requirements Model:

s can be effectively baselined;

« can be used by “Prepare/Refine Specification™ as input in creating the Cleanroom Black Box
Specification (Vol 3);

» serves as a starting point for the “Incremental Development™ activity which will utilize the
RICC tools.

Preliminary DE/AE Approach E-10 Tuly 25. 1994

“4)

(5)

(6)

Develop/Refine Domain/Application Architecture Model (aka Physical View of the Architecture):
Initially, the key abstractions can be used to create a preliminary Architecture Model. As the Object
Maodel solidifies, candidate architectures can be explored to validate key scenarios. A candidate archi-
tecture is chosen and preliminary design decisions are demonstrated in a critical thread SAS demo.
This demo shows that Quality Performance Requirements (QPRs) can be met in light of critical sce-
nario operations. The chosen Architecture is then baselined. Application SASs must imbed Domain
SAS. Developers of Domain SASs should examine the Trade Studies which are recorded as part of
the Domain Architecture Model.

Incremental Software Development: Develop displays, messages, database queries and mission com-
ponents within the structure of the SAS. This activity is iterative with the Develop/Refine Architec-
ture Model activity.

Cenify Software: This activity verifies that the developed sofiware exhibits the same behavior as is
defined in the specification.

Define/Refine the Engineering Artifacts

The Cleanroom Specification Volumes are defined in three forms: a Domain-level Specification, System-level Speci-
fication and Release-level Specification. The Domain-level Specification contains high-level requirements and con-
straints for the Domain. The System-level Specification contains the high-level system requirements and constraints.
Each Release-level Specification contains lower-level requirements as pertaining to a particular release.

The Object Model (aka Logical View of the Architecture) constitutes a logical machine independent design view of
the software architecture and consists of:

¢y

2

3)

4)

5

Class category diagrams, identifying system layers.

Class diagrams depicting the static view of the problem domain which consists of classes & the rela-
tionships between classes (class collaboration).

Class specifications for each class that describe the responsibility of each class. Information such as
attributes, operations. and relationships are captured textually in the class specification.

Object scenario diagrams that depict the dynamic view of how the classes interact to perform key sys-
tem mechanisms or threads.

Ada PDL giving an abstract view of Object Behavior.

The Architecture Model (aka Physical View of the Architecture) defines the executable components of the system. A
display hierarchy is created using Display Builder. This hierarchy captures the user interface and menu flow. The
major functional components of the system are defined using UNAS Tasks. The executable program (called a SAS)
consists of UNAS Tasks grouped into UNAS Processes (Equivalent to UNIX Processes) which are allocated to hard-
ware processors, A UNAS Task “withs™ in the appropriate Ada packages to carry out it's intended functionality.

The mission components are represented as Ada packages. Miscellaneous data files are created and maintained by the
various RICC tools. Trade Studies identify different mappings of Classes (Ada Packages) to UNAS tasks, and associ-
ated reasons for making decisions leading to the mappings.

Define/Refine the Mapping between the Artifacts

The iterative mapping between the major antifacts is shown in Figure 9. The mapping is shown within the context of
the layered framework.

This layering creates a separation of concerns between the framework layers such that:

(1

functional requirements can change. impacting the Object Model but will not necessarily perturb the
Architecture Model (including the network topology); and

Preliminary DE/AE Approach E-11 July 25, 1994

(2) changes. over time, in the network topology, operating systems, and COTS products won't affect the
Object Model or Specification.
Specification Object Model Architecture Model
BB | C} C}
OPS ﬁ
CONCEPT Q
EVENT I I ﬂ O
BB SubFunctions
APPL “ @ H
Lower Level BBs @' :
¥
SERVICES @

Figure 9. Artifact Mappings

Select/Adjust the Architectural Framework

A key aspect of understanding the artifacts was to define them within the context of an overall architectural frame-
work for CJ1 systems. This framework transcends the different artifacts as described below.

The Cleanroorn Specification defines a set of black box subfunctions that represent the key system functionality of
the system. These black box subfunctions map to the Event Layer which captures the dynamic system behavior.

The overall static object oriented architecture is represented in a layered framework depicted in Figure 9 (middle col-
umn). Each layer consists of one or more class categories. The major layers are described as:

(1

()

(3)

Operations Concept Layer: the user behavior derived from MOIA is captured here. The classes con-
sist of sets of user actions (i.e. a session) that perform some functional system behavior. The dynamic
interaction of user-computer is described by the use state transition diagrams.

Event Layer: the dynamic system behavior that captures system policies and procedures. This is typi-
cally the most volatile pant of a system. System events can be things such as satellite launches, or user
procedural interactions. The classes at this layer invoke class operations at the Applications Layer to

perform system functions.

Applications Layer: where the tangible classes are defined. Things such as system messages are
encapsulated. Usually these classes are less dynamic but message classes will encapsulate algorithmic
processing. The stable, static system data is encapsulated at this level. In essence. these classes form
an object layer over lower-level services such as UNAS. Query Processor & Display Builder pack-
ages.

Preliminary DE/AE Approach E-12 July 25, 1994

4

Services Layer: solution space services such as the RICC components.

The Architecture Model (aka Physical View of the application) consists of the same architectural layers as described
above which are built upon the RICC components. These are:

)

2)

(3

“4)

Operations Concept Layer captures the user interactions of the system. All screens and user actions
are represented here. The RICC Display Builder tool creates artifacts (Ada main programs, etc.) that
reside in this layer.

Event Layer in which dynamic system behavior is captured in a Sofiware Architecture Skeleton
(SAS) developed using the UNAS tool. UNAS Tasks are used to capture dynamic system behavior. A
system architect defines the tasks based upon the Object Model. The system architect also defines the
physical layout (network topology) of the architecture. UNAS Tasks are allocated to UNAS Processes
and hardware processors in this step.

Application Layer which is an object layer (implemented as Ada packages) that represent information
storage & retrieval while encapsulating system data. A key approach in this layer is to build an object
layer on top of the Service Layer (RICC components) such that a class (its data & operations) defined
by the Object Mode! is mapped into Ada package specs. The implementation of the class (via class
specific code & calls to RICC services) is hidden in the package body.

Services Layer which contains solution space services such as the RICC components.

Detail /Improve the Process

This captures the process to the level needed for practitioners who are using it to build product-line applications.
Rather than attempt to define the entire process at once, an incremental approach is followed: modest portions are
chosen for detailing, and the experience gained in executing the selected portions is used to guide further definition

activities.

Use the Defined Process

The process definition increment concludes with its most important part: use for real project activities and feedback to
help improve the process and to guide process definition activities in related areas.

Preliminary DE/AE Approach E-13 July 25, 1994

Preliminary DE/AE Approach E-14 July 25, 1994

